Field equations in cylindrical and spherical coordinates
In this post, we provide a summary of the field equations of
solid mechanics as they pertain to cylindrical and spherical
coordinates. These representations are particularly beneficial in
deriving the differential equations of axisymmetric objects and
obtaining analytical solutions for displacements and stresses.
Cylindrical coordinates
Cauchy’s equation of motion
\[\rho \dot{\boldsymbol{v}} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho \boldsymbol{b}\]
\[\begin{split}
\rho \dot{v}_r &= \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{1}{r}\left(\sigma_{rr}-\sigma_{\theta\theta}\right) + \rho b_r \\
\rho \dot{v}_{\theta} &= \frac{\partial \sigma_{\theta r}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{\theta z}}{\partial z} + \frac{2}{r}\sigma_{\theta r} + \rho b_{\theta}\\
\rho \dot{v}_{z} &= \frac{\partial \sigma_{zr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{z\theta}}{\partial \theta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r}\sigma_{zr} + \rho b_z\\
\end{split}\]
Time derivative of vector field $\boldsymbol{v}$
\[\begin{split}
\dot{v}_r &= \frac{\partial v_r}{\partial t} + v_r\frac{\partial v_r}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_r}{\partial \theta} + v_z\frac{\partial v_r}{\partial z} - \frac{1}{r}v_\theta^2\\
\dot{v}_{\theta} &= \frac{\partial v_{\theta}}{\partial t} + v_r\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_z\frac{\partial v_{\theta}}{\partial z} - \frac{1}{r}v_rv_{\theta}\\
\dot{v}_z &= \frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\\
\end{split}\]
Velocity gradient
\[\boldsymbol{L} = \begin{bmatrix}
\frac{\partial v_r}{\partial r} & \frac{1}{r}\frac{v_r}{\partial \theta}-\frac{v_{\theta}}{r} & \frac{\partial v_r}{\partial z}\\
\frac{\partial v_{\theta}}{\partial r} & \frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta}+\frac{v_r}{r} & \frac{\partial v_{\theta}}{\partial z}\\
\frac{\partial v_z}{\partial r} & \frac{1}{r}\frac{\partial v_z}{\partial \theta} & \frac{\partial v_z}{\partial z}
\end{bmatrix}\]
Spherical coordinates
Cauchy’s equation of motion
\[\rho \dot{\boldsymbol{v}} = \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} + \rho \boldsymbol{b}\]
\[\begin{split}
\rho\dot{v}_r &= \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial \sigma_{r\phi}}{\partial \phi} + \frac{1}{r}\left(2\sigma_{r\theta} - \sigma_{\theta\theta}-\sigma_{\phi\phi}+\sigma_{r\theta}\cot\phi\right) + \rho b_r\\
\rho\dot{v}_{\theta} &= \frac{\partial \sigma_{\theta r}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{\theta\theta}}{\partial \theta}+\frac{1}{r\sin\theta} \frac{\partial \sigma_{\theta\phi}}{\partial \phi} + \frac{1}{r}\left(3\sigma_{r\theta} +(\sigma_{\theta\theta}-\sigma_{\phi\phi})\cot\theta\right) + \rho b_{\theta}\\
\rho\dot{v}_{\phi} &= \frac{\partial \sigma_{\phi r}}{\partial r} + \frac{1}{r}\frac{\partial \sigma_{\phi\theta}}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \frac{1}{r}\left(3\sigma_{r\phi} + 2\sigma_{\theta\phi}\cot\theta\right) + \rho b_{\phi}\\
\end{split}\]
Time derivative of vector field $\boldsymbol{v}$
\[\begin{split}
\dot{v}_r &= \frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{\partial v_r}{\partial \theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{v_{\phi}^2 - v_{\theta}^2}{r}\\
\dot{v}_{\theta} &= \frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial v_{\theta}}{\partial \phi} + \frac{v_rv_{\theta}}{r} - \frac{v_{\phi}^2}{r}\cot\theta\\
\dot{v}_{\phi} &= \frac{\partial v_{\phi}}{\partial t} + v_r\frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi}}{r\sin\theta}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_rv_{\phi}}{r} + \frac{v_{\theta}v_{\phi}}{r}\cot \theta\\
\end{split}\]
Velocity gradient
\[\boldsymbol{L} = \begin{bmatrix}
\frac{\partial v_r}{\partial r} & \frac{1}{r}\frac{\partial v_r}{\partial \theta}-\frac{v_{\theta}}{r} & \frac{1}{r\sin\theta}\frac{\partial v_r}{\partial \phi} - \frac{v_{\phi}}{r}\\
\frac{\partial v_{\theta}}{\partial r} & \frac{1}{r}\frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r}{r} & \frac{1}{r\sin\theta}\frac{\partial v_{\theta}}{\partial \phi} - \frac{v_{\phi}}{r}\cot \phi\\
\frac{\partial v_{\phi}}{\partial r} & \frac{1}{r}\frac{\partial v_{\phi}}{\partial \theta} & \frac{1}{r\sin\theta}\frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\theta}}{r}\cot\theta + \frac{v_r}{r}
\end{bmatrix}\]