This is a text. In order to convert this document into Markdown, use the following tool:
pandoc main.tex -o main.html -f latex -t html --mathjax --bibliography sources.bib
The package lstlisting will automatically wrap long sentences as defined in the lstset settings above.
This will create a new file called main.md.
Below is a figure with caption. The figure number is 1.

For subfigures, put them inside one figure.

A table example is shown below.
| A | B |
|---|---|
| a | b |
| c | d |
The table number if 1.
Below is an example of a equation:
\[\int_{\Omega} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} d\Omega = 0 \label{eq:sigma}\tag{1}\]
\[\boldsymbol{\sigma} = \mathbb{C} : \boldsymbol{\varepsilon} \label{eq:sigma_c_epsilon}\tag{2}\]
Stress \(\boldsymbol{\sigma}\) in Eq.\(\ref{eq:sigma}\) is defined by Eq.\(\ref{eq:sigma_c_epsilon}\). Numbering of equations in html does not seem to work nicely.
\[\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{12} & D_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix} \label{}\tag{3}\]
This is my recent publication (Mikula, Vastola, and Zhang 2024).
% PURPOSE:
% Example of tensor rotation about a general axis
% Rotating tensor of elastic constants about an arbitrary vector o
%
% INPUT:
% > elastic constants D_11, D_12, D_44
% > rotation axis o1, o2, o3
% > rotation angle theta
% OUTPUT:
% > rotated tensor of elastic constants in matrix form D_rot
% -----------------------------------------------------------
% Material : [GPa]
D_11 = 190
D_12 = 161
%D_44 = (D_11-D_12)/2 % uncomment for isotropic elasticity
D_44 = 42.3
% Axis to rotate about
% Make sure that |o|=1
o1 = 0
o2 = 0
o3 = 1
% Specify the angle [RAD]
theta = -pi/4
% -----------------------------------------------------------
% Tensor of elastic constants (cubic elasticity) in the matrix form
% Voigth notation
D = [D_11 D_12 D_12 0 0 0
D_12 D_11 D_12 0 0 0
D_12 D_12 D_11 0 0 0
0 0 0 D_44 0 0
0 0 0 0 D_44 0
0 0 0 0 0 D_44];
% Matrix due to the conversion from engineering to tensorial strain
R(:,:) = 0.0d0;
R(1,1) = 1.0d0;
R(2,2) = 1.0d0;
R(3,3) = 1.0d0;
R(4,4) = 2.0d0;
R(5,5) = 2.0d0;
R(6,6) = 2.0d0;
invR(:,:) = R(:,:);
invR(4,4) = .5d0;
invR(5,5) = .5d0;
invR(6,6) = .5d0;
% Rotating about an arbitrary axis (between crystal and global coordinate system)
R_cg=[o1^2+(1-o1^2)*cos(theta) o1*o2*(1-cos(theta))-o3*sin(theta) o1*o3*(1-cos(theta))+o2*sin(theta)
o1*o2*(1-cos(theta))+o3*sin(theta) o2^2+(1-o2^2)*cos(theta) o2*o3*(1-cos(theta))-o1*sin(theta)
o1*o3*(1-cos(theta))-o2*sin(theta) o2*o3*(1-cos(theta))+o1*sin(theta) o3^2+(1-o3^2)*cos(theta)];
for i=1:3
for j=1:3
mmod = [1 1 1 1 1
-1 2 2 2 2
0 0 3 3 3
1 1 1 4 4
2 2 2 2 5];
K1(i,j) = R_cg(i,j)^2;
K2(i,j) = R_cg(i,mmod(j+1,3))*R_cg(i,mmod(j+2,3));
K3(i,j) = R_cg(mmod(i+1,3),j)*R_cg(mmod(i+2,3),j);
K4(i,j) = R_cg(mmod(i+1,3),mmod(j+1,3))*R_cg(mmod(i+2,3),mmod(j+2,3)) + ...
R_cg(mmod(i+1,3),mmod(j+2,3))*R_cg(mmod(i+2,3),mmod(j+1,3));
end
end
T_cg(1:3,1:3) = K1;
T_cg(1:3,4:6) = 2.0d0*K2;
T_cg(4:6,1:3) = K3;
T_cg(4:6,4:6) = K4;
invT_cg(1:3,1:3) = K1';
invT_cg(1:3,4:6) = 2.0d0*K3';
invT_cg(4:6,1:3) = K2';
invT_cg(4:6,4:6) = K4';
% Rotated tensor of elastic constants
D_rot = T_cg*D*R*invT_cg*invR
Test reference to Eq.\(\ref{eq:sigma_c_epsilon}\).
Mikula, Jakub, Guglielmo Vastola, and Yong-Wei Zhang. 2024. “Dual-Phase Polycrystalline Crystal Plasticity Model Revealing the Relationship Between Microstructural Characteristics and Mechanical Properties in Additively Manufactured Maraging Steel.” International Journal of Plasticity 180: 104058. https://doi.org/https://doi.org/10.1016/j.ijplas.2024.104058.