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1 Introduction

In this post, we illustrate a simple implementation of a phase field model using
APDL (Ansys Parametric Design Language). We assume that we are looking
for the solution on a rectangular domain with a regular mesh. This assumption
allows us to solve the phase field equations using the finite difference scheme.
Meantime, the displacement field is solved using the finite element method of the
ANSYS’s solver without any restriction on the underlying material model (elas-
tic, elasto-plastic, etc.). Both implicit or explicit solvers can be used. Such im-
plementation provides ample opportunities for testing the behaviour of various
material models or loading conditions on the process of phase transformation.

2 Governing equations

Here, we consider a simple phase field model presented by [1]. In this model,
the total energy of the system Ψ can be written as
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where A, B, and C are material constants related to the double-well energy
landscape defining the thermodynamics of the phase transformation, ϕ is the
scalar order parameter which is a continuous function typically in the range
between 0 and 1, where 0 represents the parent phase and 1 represents the
product phase. The symbol : indicate the tensor contraction. κ is a material
parameter related to the interface energy between the parent and the product
phase.
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C is the tensor of elastic constants, and εe is the elastic strain tensor. De-
pending on the choice of the constitutive model, the elastic strain can be addi-
tively decomposed into

εe = ε− εt (3)

where the total strain tensor ε is defined by
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and εt is the transformation strain associated with the phase transformation,
therefore

εt = ϕε0 (5)

Other strain components can be considered together with the transformation
strain, such as plastic strain for instance, if dealing with elasto-plastic material
model.

The kinetics of the phase transformation is typically captured by the Ginzburg-
Landau theory where the rate of the change in the order parameter becomes

∂ϕ

∂t
= −MδΨ

δϕ
(6)

Here, the right term of the equation represents a variational derivative of
the energy function with respect to the function ϕ(x⃗)

The right hand side of this equation can be obtained from the Euler-Lagrange
equation where
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which can be easily evaluated in the following steps
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Therefore
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We have therefore obtained a non-linear differential equation of the order pa-
rameter function ϕ. In addition to this equation, it is also necessary to consider
the evolution of the displacement field which can be solved through

ρü = ∇ · σ + b (10)

Neglecting the inertial forces (considering instantaneous mechanical equilib-
rium), and neglecting the body forces, the displacement field can be obtained
by solving

∇ · σ = 0 (11)

Here, we use ANSYS to deal with the mechanical solver and write an APDL
script to solve the phase field differential equation. The numerical implementa-
tion and the APDL script is presented below.
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3 Numerical solution

On a regular grid, we can solve the equations using explicit finite difference
scheme

∆t

M
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∆x2
ξ

(12)
Here, ∆t is the simulation time step, and ∆xξ is the grid spacing.

4 APDL script

In order to solve these equations in ANSYS, we write a APDL script. In the
first illustration, we consider a 2D simulation.

We identify a rectangular domain with 1002 quadrilateral elements of the
element type 42.

We consider the isotropic material model defined by Young’s modulus and
Poisson’s ratio.

In order to prescribe the transformation strain ε0, we will be using the in-
built thermal strain option, where the anisotropic tensor can be prescribed.

With such settings, we then use temperature field to represent the order
parameter ϕ, where the temperature values near zero will define the parent
phase while temperature values near one will define the product phase. Values
in between will represent the diffused interfaces.

The overall finite difference implementation is written within a loop in which
the order parameter evolves in time by a time step ∆t.

5 Simulations
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