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1 Introduction

The purpose of this post is to expound upon the fundamental tensors that arise within the Eshelby’s
problem, offering their concise closed forms. While the tedious derivations are omitted here, I supplement
this with finite element simulations to validate the equations. Included are Matlab/Octave codes designed
to compute the Eshelby’s tensors for arbitrary ellipsoids and anisotropic materials. These codes may
prove particularly valuable in coding self-consistent polycrystal homogenization approaches.

Eshelby’s problem centers around an ellipsoidal inclusion embedded within an infinitely large homoge-
neous matrix. When the inclusion alters its dimensions or form through the imposition of eigen strains
(such as thermal or phase-induced strains), it prompts stress formation both within the inclusion and its
surroundings. Remarkably, Eshelby demonstrated that stress (and strain) within the ellipsoidal inclusion
remains uniform.

The correlation between the applied eigen strain 6% within the ellipsoidal domain and the ensuing strain
€5 generated within this domain is described by the equation:

€ij = Sijkich (1)
where S;;1; is the fourth order Eshelby’s tensor. Beginning with the most general case of the Eshelby’s

tensor in the following section, I then proceed with simpler cases developed under certain specific as-
sumptions.

1.1 Fully anisotropic material
Let’s begin with the implicit equation of an ellipsoid:

(2) + (%) +(2) - 2

where x; are the coordinates along the principal axes and a; are the lengths of the semi-axes.

In the case of a fully anisotropic material, the Eshelby’s tensor cannot be derived in a closed form but
can be expressed in terms of elliptical integrals that can be solved numerically. This most general form
is expanded in the text below.

Let us first define the Hill polarization tensor P;jx; in the form presented by [1], [2].

1 T 27 )
Poi= 4= [ [ Miu(6.0)sinbasao (3)
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where
o1 AT le A7 le. A7 le. A7 le.
Mzgkl = 4 ik fzflJF ik §]§l+ 3l €z€k+ il ijk (4)

Note that in the previous equation, Aj_k1 indicate the elements of the inverse matrix.

Let us then define a vector 5 given by:
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and a tensor:
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Air, = Cijm&& (6)

The Eshelby’s tensor can then be obtained by the multiplication of the Hill polarization tensor P;;; and
the tensor of elastic constants Cjxi:

Siikt = PijmnCrmnki (7)

Having established the Eshelby’s tensor, it is now possible to calculate the strain e within the ellipsoid
given its eigen strain €°. Notice however, that for a fully anisotropic case, numerical integration needs
to be employed to evaluate the previous equations. One possible implementation is discussed below.

1.2 Numerical Integration - Gauss-Legendre Quadrature

The integration of the previous equations can be approximated by the Gauss integration scheme:
/ / M;;11(0, ¢) sin0dbdg ~ — Z Z M;j11(0;, ¢;) sin (0;) wyw; det J (8)
0=0Jp=
where § = Z(§{ + 1) and ¢ = 7(n + 1) and the Jacobian of the transformation is

% ag] {g ﬂ 9)

J =

therefore det J = %~
In the previous expressions, w; are the Gauss weights and £ and 7 are the Gauss node coordinates.
A Matlab code evaluating the Eshelby’s tensor for arbitrary aspect ratio and anisotropy is given below:

Listing 1: Matlab example

% PURPOSE:
% For a given eigen strain compute the strain within the ellipsoid using the
Eshelby’s equations.

clear
clc

% Compute the Hill polarization tensor:
% Select the number of Gauss integration points:

ngp =10;

% Define the shape of the ellipsoid

a_1 = 2;
a_2 = 1;
a_3 = 3;

% Define the elastic constants:
% Isotropic elasticity:

E = 210.0e9;

v = 0.3;

c_11 = Ex(1-v)/(1+v)/(1-2%v);
c_12 = Exv/(1+v)/(1-2%v);
c_13 = Exv/(1+v)/(1-2%v);

c_14 = 0;
c_15 = 0;
c_16 = 0;

c_22 = Ex(1-v)/(1+v)/(1-2%xv);
c_23 = Exv/(1+v)/(1-2%v);

c_24 = 0;
c_25 = 0;
c_26 = 0;

c_33 = Ex(1-v)/(1+v)/(1-2%v);




33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

c_
c_
c_
c_
c_
c_
c_
c_
c_

h

e_

C

1;
¢

%
%C

"

fo
fo
fo
fo

34 = 0;
35 = 0;
36 = 0;
44 = E/2/(1+v);
45 = 0;
46 = 0;
55 = E/2/(1+v);
56 = 0;

66 = E/2/(1+v);

Define eigen strain
0 = [0.023522, 0.076558, 0.019838, 0.068208, 0.059107,
= [
c_11/2 c_12 c_13 c_14 c_15 c_16
0 c_22/2 c_23 c_24 c_25 c_26
0 0 c_33/2 c_34 c_35 c_36
0 0 0 c_44/2 c_45 c_46
0 0 0 0 c_55/2 c_56
0 0 0 0 0 c_66/2
= C+C’
Fully anisotropic material:
= [
1.9627 0.71094 1.2973 2.1394
0.71094 0.88304 0.57145 1.129
1.2973 0.57145 1.7383 1.7461
2.1394 1.129 1.7461 2.8236
1.908 0.85012 1.5757 2.6732
1.1079 0.76032 0.97334 1.5282
1;
Convert from Voigt notation to tensor notation:
r i=1:3
r j=1:3
r k=1:3
r 1=1:3
c(1, 1, 1, 1) = C(1,1);
c(1, 1, 2, 2) = C(1,2);
c(1, 1, 3, 3) = €(1,3);
c(1, 1, 2, 3) = C(1,4);
c(1, 1, 1, 3) = C(1,5);
c(1, 1, 1, 2) = C(1,6);
c(2, 2, 1, 1) = C(2,1);
c(2, 2, 2, 2) = C(2,2);
c(2, 2, 3, 3) = C(2,3);
c(2, 2, 2, 3) = C(2,4);
c(2, 2, 1, 3) = C(2,5);
c(2, 2, 1, 2) = C(2,6);
c(3, 3, 1, 1) = C(3,1);
c(3, 3, 2, 2) = C(3,2);
c(3, 3, 3, 3) = C(3,3);
c(3, 3, 2, 3) = C(3,4);
c(3, 3, 1, 3) = C(3,5);
c(3, 3, 1, 2) = C(3,6);
c(2, 3, 1, 1) = C(4,1);
c(2, 3, 2, 2) = C(4,2);
c(2, 3, 3, 3) = C(4,3);
c(2, 3, 2, 3) = C(4,4);

0.031905];

1.908

0.85012

1
2.
2
1

.B757
6732
.9695
L4951

1.1079
0.76032
0.97334

1.5282

1.4951

1.1461
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c(2, 3, 1, 3) = C(4,5);
c(2, 3, 1, 2) = C(4,6);
c(l1, 3, 1, 1) = C(5,1);
c(1, 3, 2, 2) = C(5,2);
c(1, 3, 3, 3) = C(5,3);
c(1, 3, 2, 3) = C(5,4);
c(1, 3, 1, 3) = C(5,5);
c(1, 3, 1, 2) = C(5,6);
c(1, 2, 1, 1) = C(6,1);
c(l1, 2, 2, 2) = C(6,2);
c(1, 2, 3, 3) = C(6,3);
c(1, 2, 2, 3) = C(6,4);
c(1, 2, 1, 3) = C(6,5);
c(1, 2, 1, 2) = C(6,6);
end
end
end
end
% Apply minor symmetries:
for i=1:3
for j=1:3
for k=1:3
for 1=1:3
c(j, i, k, 1) = c(i, j, k, 1);
c(i, j, 1, k) = c(i, j, k, 1);
c(j, i, 1, k) = c(i, j, k, 1);
end
end
end
end

switch ngp

case 1
x = [0];
w = [2];
case 2
x = [0.5773502692, -0.5773502692];
w = [1,1];
case 3
x = [0.7745966692, -0.7745966692, 0.0];
w = [0.5555555556, 0.5555555556, 0.8888888889];
case 4
x = [0.8611363116, -0.8611363116, 0.3399810436, -0.3399810436];
w = [0.3478548451, 0.3478548451, 0.6521451549, 0.6521451549];
case b
x = [0.9061798459, -0.9061798459, 0.5384693101, -0.5384693101, 0.0];
w = [0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705, 0.5688888889];
case 6
x = [0.9324695142, -0.9324695142, 0.6612093865, -0.6612093865,

0.2386191861,
[0.1713244924,
0.4679139346];
case 7

w =

x =
0.4058451514
[0.1294849662,
0.3818300505,
case 8

w =

[ 0.9491079123,

-0.23861918611];

0.1713244924, 0.3607615730, 0.3607615730, 0.4679139346,

-0.9491079123, 0.7415311856,
0.0];
0.2797053915,

-0.7415311856,
-0.4058451514,
0.1294849662,

0.2797053915, 0.3818300505,

0.41795918371] ;
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[0.9602898565, -0.9602898565, 0.7966664774, -0.7966664774,
0.5255324099, -0.5255324099, 0.1834346425, -0.1834346425];
[0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345, 0.3137066459,
0.3137066459, 0.3626837834, 0.3626837834];
case 9
x = [0.9681602395, -0.9681602395, 0.8360311073, -0.8360311073,
0.6133714327, -0.6133714327, 0.3242534234, -0.3242534234, 0.0];
w = [0.0812743883, 0.0812743883, 0.1806481607, 0.1806481607, 0.2606106964,
0.2606106964, 0.3123470770, 0.3123470770, 0.3302393550];
case 10
x = [0.9739065285, -0.9739065285, 0.8650633667, -0.8650633667,
0.6794095683, -0.6794095683, 0.4333953941, -0.4333953941, 0.1488743390,
-0.14887433901;
w = [0.0666713443, 0.0666713443, 0.1494513492, 0.1494513492, 0.2190863625,
0.2190863625, 0.2692667193, 0.2692667193, 0.2955242247, 0.2955242247];
otherwise
error (’Invalid number of Gauss integration points. Process terminated!’)
end

™
]

=
]

% Tensor M:
M = zeros(3,3,3,3);

for ii=1:ngp

for jj=1:ngp
phi = pi*(x(ii) + 1);
theta = pi/2*(x(jj) + 1);

xi (1) = sin(theta)*cos(phi)/a_1;
xi(2) = sin(theta)*sin(phi)/a_2;
xi(3) = cos(theta)/a_3;

A = zeros(3,3);

for i=1:3

for j=1:3

for k=1:3

for 1=1:3

A(i,k) = A(i,k) + c(i,j,k,1)*xi(j)*xi(1);

end

end

end

end

invA = inv (A);

for i=1:3

for j=1:3

for k=1:3

for 1=1:3

M(i,j,k,1) = M(i,j,k,1) + 1/4%(invA(j,k)*xi(i)*xi(1l) + invA(i,k)#*xi(j)=*xi(l
) + invA(j,1)*xi(i)*xi(k) + invA(i,1)*xi(j)*xi(k))*sin(theta)*w(ii)*w(jj
) *pi*pi/2;

end

end

end

end

end
end
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% Eshelby’s tensor:
s = zeros(3,3,3,3);

for i=1:3
for j=1:3
for k=1:3
for 1=1:3
for m=1:3
for n=1:3
s(i,j,k,1) = s(i,j,k,1) + 1/4/pi*M(i,j,m,n)*c(m,n,k,1);
end
end
end
end
end
end

% Convert Eshelby’s tensor into Voigt notation:

s = [

s(1, 1, 1, 1), s(1, 1, 2, 2), s(1, 1, 3, 3), s(1, 1, 2, 3), s(1, 1,

3, 1), s(1, 1, 1, 2)
s(2, 2, 1, 1), s(2, 2, 2, 2), s(2, 2, 3, 3), s(2, 2, 2, 3), s(2, 2,

3, 1), s(2, 2, 1, 2)
s(3, 3, 1, 1), s(3, 3, 2, 2), s(3, 3, 3, 3), s(3, 3, 2, 3), s(3, 3,

3, 1), s(3, 3, 1, 2)
2xs(2, 3, 1, 1), 2xs(2, 3, 2, 2), 2xs(2, 3, 3, 3), 2*s(2, 3, 2, 3), 2*xs(2, 3,

3, 1), 2*xs(2, 3, 1, 2)

2%s(3, 1, 1, 1), 2xs(3, 1, 2, 2), 2*s(3, 1, 3, 3), 2*s(3, 1, 2, 3), 2xs(3, 1,
3, 1), 2%s(3, 1, 1, 2)

2xs(1, 2, 1, 1), 2xs(1, 2, 2, 2), 2*xs(1, 2, 3, 3), 2*s(1, 2, 2, 3), 2xs(1, 2,
3, 1), 2*xs(1, 2, 1, 2)

disp(’Program has finished!’)

2 Finite element simulation - verification of the semi-analytical
implementation

Due to the intricate and error-prone nature of deriving the aforementioned equations, ensuring our
confidence in their application necessitates a finite element simulation. This approach involves comparing
the outcomes of a numerical finite element simulation solution with the semi-analytical solution outlined
by the previous equations.

A finite element analysis is constructed encompassing three distinct cases of ellipsoids characterized by
aspect ratiosa x bxc: 1 x1x1,1x1x2,and 2 x 1 x 3.

The finite element Representative Volume Elements (RVEs) are visually depicted below. It’s worth
noting that these RVEs possess finite dimensions, which stands in contrast to the Eshelby solutions
derived for an infinitely large matrix. Consequently, this discrepancy may introduce some variations.
However, as long as the matrix’s dimensions are sufficiently large relative to the size of the ellipsoid, any
resulting error should remain relatively minor.

Let us generate a random eigen strain tensor

1" (10)

60:[0.023522 0.076558 0.019838 0.068208 0.059107 0.031905

Given this eigen strain, the strain generated within the ellipsoid is predicted using the semi-analytical




i 4‘7_ I — )E I ‘\—er‘l) I — ); ‘, 1»:;___\(%:_ — )-;
\ | { \ \ | ﬂ | |
| | | | | | |
l ‘ | ‘\ ‘ | ‘ ! |
. | |
‘ ¢ \‘ % | \ |
‘ \ ‘ | l \
| L | | | \ L |
\ e | P J \ S S |
| T \‘\ \‘ ‘L/’// - ! 1 " \‘\\
~. ) il \\ —~.J)
S~ " sl T o~ —
7 R _ Ny ~_ —
= (a) - == (b) = (0)

Figure 1: Ellipsoids of aspect ratios a) 1x1x1, b) 1x1x2, and ¢) 2x1x3.

solution (see Matlab code) and using the finite element simulation. The results are compared in the
table below.

Table 1: Semi-analytical solutions and finite element simulation solutions of the ellipsoid strain compo-
nents for the given eigen strain tensor.

€0 €(1><1><1) 6(1><1><2) 6(2><1><3)

FEM analytical FEM analytical FEM analytical
zz 0.023522 0.016544 0.016907  0.0197261 0.020092  0.0106386 0.009391
yy 0.076558 0.042158 0.042171  0.0507705 0.050056  0.0676905 0.067769
zz 0.019838 0.014737 0.015157  0.0064683 0.006845  0.0050078 0.0051844
yz 0.068208 0.032787 0.032480  0.0316119 0.030895  0.0429553 0.04018
zz 0.059107 0.028448 0.028146  0.0273814 0.026772  0.0220308 0.019031
zy 0.031905 0.015371 0.015187  0.0184856 0.018011  0.0208782 0.018065

An important observation to make is that in the isotropic scenario, the outcomes remain unaffected by
the Young’s modulus E, manifesting a dependency solely on the Poisson’s ratio v.

To illustrate the convergence of the semi-analytical solutions across varying numbers of Gauss integration
points towards the numerical finite element solution, refer to the figures provided below. These figures
distinctly demonstrate the alignment between the results. The dashed lines in the figures represent the
finite element simulation solutions for the six components of the strain tensor, while the circled lines
represent the semi-analytical solutions for varying number of Gauss integration points with increased
number of integration points leading to a more precise result.
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Figure 2: Sensitivity analysis demonstrating the convergence of numerical integration using the Gauss
method (marked lines) and the solution obtained from the finite element simulation (dashed lines).

Below, the outcomes of the finite element simulations for the three outlined cases are displayed. These
visualizations depict the €,, component of the strain field, effectively illustrating the uniform nature
of strain (and stress) within the ellipsoid. This corroborates the findings derived by Eshelby. A no-
table observation is the remarkable concurrence between the numerical outcomes and the semi-analytical
solutions derived for an infinitely extensive matrix, despite the presence of stress-free boundaries.

In the ultimate assessment, the case involving dimensions 2 x 1 x 3 is explored, featuring a random
eigen strain a?j coupled with a fully anisotropic tensor of elastic constants Cjjr;. Importantly, when
generating a random elastic tensor matrix, it’s imperative to verify its positive definiteness. For instance
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Figure 3: Strain component €., for the three ellipsoid cases. Notice that the strain field within the
ellipsoid is uniform.

using Matlab, this can be accomplished by employing the chol(C) function, which would issue an error
message if matrix ‘C* lacks positive definiteness.
For the following case of eigen strain and tensor of elastic constants

)" (11)

€0 = [0.023522 0.076558 0.019838 0.068208 0.059107 0.031905
1.9627 0.71094 1.2973 2.1394  1.908 1.1079
0.88304 0.57145 1.129 0.85012 0.76032
C— 1.7383 1.7461 1.5757 0.97334 (12)
2.8236 2.6732  1.5282
2.9695  1.4951
1.1461

the results of the semi-analytical and numerical solutions are collated in the figure below. Also, strain
field within and around the ellipsoidal inclusion is presented.

A noteworthy observation is the heightened complexity of the strain field surrounding the precipitate
and reaching the domain boundaries. In terms of the semi-analytical solution, it becomes evident that an
increased number of Gauss integration points would facilitate even stronger convergence. Nevertheless,
it is evident that the semi-analytical results and the finite element simulation outcomes align remarkably
well also for a case of fully anisotropic material.

3 Special cases - closed form solutions

The previous section explored an arbitrary ellipsoid within an anisotropic material. However, by imposing
specific assumptions about the ellipsoid’s shape and considering simplified anisotropic conditions, it is
possible to derive closed-form analytical solutions. Several of such examples are considered below:

3.1 Isotropic sphere

For the case of a spherical inclusion and isotropic material, the following expression can be derived [3]:

5 1 2
Sijr = (1 - gﬂ) Il + 55 (Iz'kfjl + Iyl — injIkl) (13)
where 8 = 1},}%:%
Below is a Matlab code. You can easily verify that the outcomes of both the general code and this
specific code will align when dealing with an isotropic spherical inclusion.

Listing 2: Matlab example

% Eigen strain:
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strain components

number of Gauss points

Figure 5: Convergence analysis of the Gauss method.

0 = [0.023522, 0.076558, 0.019838, 0.068208, 0.059107, 0.031905];

Poisson’s ratio:

= 0.3;

beta = (10.0%*v-8.0)/(15.0*xv-15.0)
13= )
for
for
for

for

s (i

eye (3
1:3
1:3
1:3
1:3
k,

B o
i

,j,k,1) = (1.0-5.0/3.0*beta)*I3(i,j)*I3(k,1) + 0.5*%beta*(I3(i,k)*I3(j,1)
+ I3(i,1)*I3(j,k) -2.0/3.0%I3(i,j)*I3(k,1));

end

end
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S = [
s(1, 1, 1, 1), s(1, 1, 2,
3, 1), s(1, 1, 1, 2)
s(2, 2, 1, 1), s(2, 2, 2,
3, 1), s(2, 2, 1, 2)
s(3, 3, 1, 1), s(3, 3, 2,
3, 1), s(38, 3, 1, 2)
2xs(2, 3, 1, 1), 2*xs(2, 3, 2,
3, 1), 2xs(2, 3, 1, 2)
2xs(3, 1, 1, 1), 2xs(3, 1, 2,
3, 1), 2*s(3, 1, 1, 2)
2xs(1, 2, 1, 1), 2xs(1, 2, 2,
3, 1), 2xs(1, 2, 1, 2)
1;

S

% Strain within the inclusion:
Sxe_0°

2)7
2)’

2))

s(1, 3), s(1, 3), s(1,

s(2, 3), s(2, 3), s (2,

s(3, 3), s(3, 3), s(3,

2*xs (2, 3), 2*xs(2, 3), 2xs(2,

2*s(3, 3), 2xs(3, 3), 2xs(3,

2*%s (1, 3), 2*s(1, 3), 2*s(1,

3.2 2D elliptical isotropic inclusion

For a 2D case of an elliptical inclusion (or a cylinder in 3D) and isotropic material, the following can be
derived. As highlighted earlier, in the isotropic case, the Eshelby’s tensor depends only on the Poisson’s

ratio v:

51111 =

S2222

53333 =

Si122 =

52211 -

S1133
S3311

51313

Sa303 =

Finally, symmetries are applied:

_ a2 2(1 —v)(a1 + a2) + a1]
2(1 —v)(ay + ag)?
_ @ [2(1 —v)(a1 + a2) + a2]
2(1 —v)(ay + a2)?
=0
as [—(1 = 2v)a; + 2vas]

ai

2(1 —v)(ay + a2)?
[—(1 —2v)as + 2vay]

§
=0

2(1 —v)(ay + ag)?
vasg

—v)(a1 + az)

az(2 —v)

2(1 — l/)(a1 + CLQ)

a1(2 — Z/)

2(1 —v)(a1 + az2)

Sijki = Sijri = Sijik = Sjuk

A Matlab code is provided below:

Listing 3: Matlab example

% Ellipse:
al=1
a2=2

% Poisson’s ratio:
nu=0.3

10
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% Transformation strain:

e_0 = [1.1 0 0;0 -1.1 0;0 0 0]

% Eshelby’ strain tensor:

S(1,1,1,1) = a2*(2*(1-nu)x*(al+a2)+al)/2/(1-nu)/(al+a2)"2;
S(2,2,2,2) = al*(2«(1-nu)x*(al+a2)+a2)/2/(1-nu)/(al+a2)"2;
S(1,1,2,2) = a2*(-(1-2*nu)*al+2*nu*a2)/2/(1-nu)/(al+a2) "2;
S(2,2,1,1) = al1*x(-(1-2%nu)*a2+2*nux*al)/2/(1-nu)/(al+a2) "2;
S(1,1,3,3) = nu*xa2/(1-nu)/(al+a2);

S(1,3,1,3) = a2*(2-nu)/2/(1-nu)/(ail+a2);

$(2,3,2,3) = al1*(2-nu)/2/(1-nu)/(al+a2);

S(3,1,1,3) = a2*(2-nu)/2/(1-nu)/(al+a2);

$(3,2,2,3) = al*(2-nu)/2/(1-nu)/(al+a2);

S(1,3,3,1) = a2*(2-nu)/2/(1-nu)/(al+a2);

$(2,3,3,2) = al1*(2-nu)/2/(1-nu)/(al+a2);

S(3,1,3,1) = a2*(2-nu)/2/(1-nu)/(al+a2);

$(3,2,3,2) = al*(2-nu)/2/(1-nu)/(al+a2);

e=zeros (3,3);

for
for
for
for
e(i,j) + S(i,j,k,1)*e_0(k,1);
end

end

end

end

% Strain within the inclusion:
e

References

[1] Renaud Masson. New explicit expressions of the hill polarization tensor for general anisotropic elastic
solids. International Journal of Solids and Structures, 45(3):757-769, 2008.

[2] Alexander P. Suvorov and George J. Dvorak. Rate form of the eshelby and hill tensors. International
Journal of Solids and Structures, 39(21):5659-5678, 2002.

[3] Elastic-plastic behaviour of polycrystalline metals and composites. Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences, 319:247-272, 10 1970.

11




