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1 Introduction

The purpose of this post is to expound upon the fundamental tensors that arise within the Eshelby’s
problem, offering their concise closed forms. While the tedious derivations are omitted here, I supplement
this with finite element simulations to validate the equations. Included are Matlab/Octave codes designed
to compute the Eshelby’s tensors for arbitrary ellipsoids and anisotropic materials. These codes may
prove particularly valuable in coding self-consistent polycrystal homogenization approaches.
Eshelby’s problem centers around an ellipsoidal inclusion embedded within an infinitely large homoge-
neous matrix. When the inclusion alters its dimensions or form through the imposition of eigen strains
(such as thermal or phase-induced strains), it prompts stress formation both within the inclusion and its
surroundings. Remarkably, Eshelby demonstrated that stress (and strain) within the ellipsoidal inclusion
remains uniform.
The correlation between the applied eigen strain ε0ij within the ellipsoidal domain and the ensuing strain
εij generated within this domain is described by the equation:

εij = Sijklε
0
kl (1)

where Sijkl is the fourth order Eshelby’s tensor. Beginning with the most general case of the Eshelby’s
tensor in the following section, I then proceed with simpler cases developed under certain specific as-
sumptions.

1.1 Fully anisotropic material

Let’s begin with the implicit equation of an ellipsoid:(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

= 1 (2)

where xi are the coordinates along the principal axes and ai are the lengths of the semi-axes.
In the case of a fully anisotropic material, the Eshelby’s tensor cannot be derived in a closed form but
can be expressed in terms of elliptical integrals that can be solved numerically. This most general form
is expanded in the text below.
Let us first define the Hill polarization tensor Pijkl in the form presented by [1], [2].

Pijkl =
1

4π

∫ π

θ=0

∫ 2π

ϕ=0

Mijkl(θ, ϕ) sin θdθdϕ (3)

where

Mijkl =
1

4

(
A−1

jk ξiξl +A−1
ik ξjξl +A−1

jl ξiξk +A−1
il ξjξk

)
(4)

Note that in the previous equation, A−1
jk indicate the elements of the inverse matrix.

Let us then define a vector ξ⃗ given by:

ξ1 =
sin θ cosϕ

a1

ξ2 =
sin θ sinϕ

a2

ξ3 =
cosϕ

a3

(5)

and a tensor:
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Aik = Cijklξjξl (6)

The Eshelby’s tensor can then be obtained by the multiplication of the Hill polarization tensor Pijkl and
the tensor of elastic constants Cijkl:

Sijkl = PijmnCmnkl (7)

Having established the Eshelby’s tensor, it is now possible to calculate the strain ε within the ellipsoid
given its eigen strain ε0. Notice however, that for a fully anisotropic case, numerical integration needs
to be employed to evaluate the previous equations. One possible implementation is discussed below.

1.2 Numerical Integration - Gauss-Legendre Quadrature

The integration of the previous equations can be approximated by the Gauss integration scheme:

1

4π

∫ π

θ=0

∫ 2π

ϕ=0

Mijkl(θ, ϕ) sin θdθdϕ ≈ 1

4π

∑
i

∑
j

Mijkl(θi, ϕi) sin (θi)wiwj detJ (8)

where θ = π
2 (ξ + 1) and ϕ = π(η + 1) and the Jacobian of the transformation is

J =

[
∂θ
∂ξ

∂θ
∂η

∂ϕ
∂ξ

∂ϕ
∂η

]
=

[
π
2 0
0 π

]
(9)

therefore detJ = π2

2 .
In the previous expressions, wi are the Gauss weights and ξ and η are the Gauss node coordinates.
A Matlab code evaluating the Eshelby’s tensor for arbitrary aspect ratio and anisotropy is given below:

Listing 1: Matlab example

1 % PURPOSE:

2 % For a given eigen strain compute the strain within the ellipsoid using the

Eshelby ’s equations.

3

4 clear

5 clc

6

7 % Compute the Hill polarization tensor:

8 % Select the number of Gauss integration points:

9 ngp =10;

10

11 % Define the shape of the ellipsoid

12 a_1 = 2;

13 a_2 = 1;

14 a_3 = 3;

15

16 % Define the elastic constants:

17 % Isotropic elasticity:

18 E = 210.0e9;

19 v = 0.3;

20

21 c_11 = E*(1-v)/(1+v)/(1 -2*v);

22 c_12 = E*v/(1+v)/(1 -2*v);

23 c_13 = E*v/(1+v)/(1 -2*v);

24 c_14 = 0;

25 c_15 = 0;

26 c_16 = 0;

27 c_22 = E*(1-v)/(1+v)/(1 -2*v);

28 c_23 = E*v/(1+v)/(1 -2*v);

29 c_24 = 0;

30 c_25 = 0;

31 c_26 = 0;

32 c_33 = E*(1-v)/(1+v)/(1 -2*v);
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33 c_34 = 0;

34 c_35 = 0;

35 c_36 = 0;

36 c_44 = E/2/(1+v);

37 c_45 = 0;

38 c_46 = 0;

39 c_55 = E/2/(1+v);

40 c_56 = 0;

41 c_66 = E/2/(1+v);

42

43 % Define eigen strain

44 e_0 = [0.023522 , 0.076558 , 0.019838 , 0.068208 , 0.059107 , 0.031905];

45

46 C = [

47 c_11/2 c_12 c_13 c_14 c_15 c_16

48 0 c_22/2 c_23 c_24 c_25 c_26

49 0 0 c_33/2 c_34 c_35 c_36

50 0 0 0 c_44/2 c_45 c_46

51 0 0 0 0 c_55/2 c_56

52 0 0 0 0 0 c_66/2

53 ];

54 C = C+C’

55

56 % Fully anisotropic material:

57 %C = [

58 % 1.9627 0.71094 1.2973 2.1394 1.908 1.1079

59 % 0.71094 0.88304 0.57145 1.129 0.85012 0.76032

60 % 1.2973 0.57145 1.7383 1.7461 1.5757 0.97334

61 % 2.1394 1.129 1.7461 2.8236 2.6732 1.5282

62 % 1.908 0.85012 1.5757 2.6732 2.9695 1.4951

63 % 1.1079 0.76032 0.97334 1.5282 1.4951 1.1461

64 % ];

65

66 % Convert from Voigt notation to tensor notation:

67 for i=1:3

68 for j=1:3

69 for k=1:3

70 for l=1:3

71 c(1, 1, 1, 1) = C(1,1);

72 c(1, 1, 2, 2) = C(1,2);

73 c(1, 1, 3, 3) = C(1,3);

74 c(1, 1, 2, 3) = C(1,4);

75 c(1, 1, 1, 3) = C(1,5);

76 c(1, 1, 1, 2) = C(1,6);

77

78 c(2, 2, 1, 1) = C(2,1);

79 c(2, 2, 2, 2) = C(2,2);

80 c(2, 2, 3, 3) = C(2,3);

81 c(2, 2, 2, 3) = C(2,4);

82 c(2, 2, 1, 3) = C(2,5);

83 c(2, 2, 1, 2) = C(2,6);

84

85 c(3, 3, 1, 1) = C(3,1);

86 c(3, 3, 2, 2) = C(3,2);

87 c(3, 3, 3, 3) = C(3,3);

88 c(3, 3, 2, 3) = C(3,4);

89 c(3, 3, 1, 3) = C(3,5);

90 c(3, 3, 1, 2) = C(3,6);

91

92 c(2, 3, 1, 1) = C(4,1);

93 c(2, 3, 2, 2) = C(4,2);

94 c(2, 3, 3, 3) = C(4,3);

95 c(2, 3, 2, 3) = C(4,4);
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96 c(2, 3, 1, 3) = C(4,5);

97 c(2, 3, 1, 2) = C(4,6);

98

99 c(1, 3, 1, 1) = C(5,1);

100 c(1, 3, 2, 2) = C(5,2);

101 c(1, 3, 3, 3) = C(5,3);

102 c(1, 3, 2, 3) = C(5,4);

103 c(1, 3, 1, 3) = C(5,5);

104 c(1, 3, 1, 2) = C(5,6);

105

106 c(1, 2, 1, 1) = C(6,1);

107 c(1, 2, 2, 2) = C(6,2);

108 c(1, 2, 3, 3) = C(6,3);

109 c(1, 2, 2, 3) = C(6,4);

110 c(1, 2, 1, 3) = C(6,5);

111 c(1, 2, 1, 2) = C(6,6);

112 end

113 end

114 end

115 end

116

117 % Apply minor symmetries:

118 for i=1:3

119 for j=1:3

120 for k=1:3

121 for l=1:3

122 c(j, i, k, l) = c(i, j, k, l);

123 c(i, j, l, k) = c(i, j, k, l);

124 c(j, i, l, k) = c(i, j, k, l);

125 end

126 end

127 end

128 end

129

130

131

132 switch ngp

133 case 1

134 x = [0];

135 w = [2];

136 case 2

137 x = [0.5773502692 , -0.5773502692];

138 w = [1,1];

139 case 3

140 x = [0.7745966692 , -0.7745966692 , 0.0];

141 w = [0.5555555556 , 0.5555555556 , 0.8888888889];

142 case 4

143 x = [0.8611363116 , -0.8611363116 , 0.3399810436 , -0.3399810436];

144 w = [0.3478548451 , 0.3478548451 , 0.6521451549 , 0.6521451549];

145 case 5

146 x = [0.9061798459 , -0.9061798459 , 0.5384693101 , -0.5384693101 , 0.0];

147 w = [0.2369268851 , 0.2369268851 , 0.4786286705 , 0.4786286705 , 0.5688888889];

148 case 6

149 x = [0.9324695142 , -0.9324695142 , 0.6612093865 , -0.6612093865 ,

0.2386191861 , -0.2386191861];

150 w = [0.1713244924 , 0.1713244924 , 0.3607615730 , 0.3607615730 , 0.4679139346 ,

0.4679139346];

151 case 7

152 x = [ 0.9491079123 , -0.9491079123 , 0.7415311856 , -0.7415311856 ,

0.4058451514 , -0.4058451514 , 0.0];

153 w = [0.1294849662 , 0.1294849662 , 0.2797053915 , 0.2797053915 , 0.3818300505 ,

0.3818300505 , 0.4179591837];

154 case 8
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155 x = [0.9602898565 , -0.9602898565 , 0.7966664774 , -0.7966664774 ,

0.5255324099 , -0.5255324099 , 0.1834346425 , -0.1834346425];

156 w = [0.1012285363 , 0.1012285363 , 0.2223810345 , 0.2223810345 , 0.3137066459 ,

0.3137066459 , 0.3626837834 , 0.3626837834];

157 case 9

158 x = [0.9681602395 , -0.9681602395 , 0.8360311073 , -0.8360311073 ,

0.6133714327 , -0.6133714327 , 0.3242534234 , -0.3242534234 , 0.0];

159 w = [0.0812743883 , 0.0812743883 , 0.1806481607 , 0.1806481607 , 0.2606106964 ,

0.2606106964 , 0.3123470770 , 0.3123470770 , 0.3302393550];

160 case 10

161 x = [0.9739065285 , -0.9739065285 , 0.8650633667 , -0.8650633667 ,

0.6794095683 , -0.6794095683 , 0.4333953941 , -0.4333953941 , 0.1488743390 ,

-0.1488743390];

162 w = [0.0666713443 , 0.0666713443 , 0.1494513492 , 0.1494513492 , 0.2190863625 ,

0.2190863625 , 0.2692667193 , 0.2692667193 , 0.2955242247 , 0.2955242247];

163 otherwise

164 error(’Invalid number of Gauss integration points. Process terminated!’)

165 end

166

167 w

168

169 % Tensor M:

170 M = zeros (3,3,3,3);

171

172

173 for ii=1: ngp

174 for jj=1: ngp

175 phi = pi*(x(ii) + 1);

176 theta = pi/2*(x(jj) + 1);

177

178 xi(1) = sin(theta)*cos(phi)/a_1;

179 xi(2) = sin(theta)*sin(phi)/a_2;

180 xi(3) = cos(theta)/a_3;

181

182

183 A = zeros (3,3);

184 for i=1:3

185 for j=1:3

186 for k=1:3

187 for l=1:3

188 A(i,k) = A(i,k) + c(i,j,k,l)*xi(j)*xi(l);

189 end

190 end

191 end

192 end

193

194 invA = inv(A);

195

196 for i=1:3

197 for j=1:3

198 for k=1:3

199 for l=1:3

200 M(i,j,k,l) = M(i,j,k,l) + 1/4*( invA(j,k)*xi(i)*xi(l) + invA(i,k)*xi(j)*xi(l

) + invA(j,l)*xi(i)*xi(k) + invA(i,l)*xi(j)*xi(k))*sin(theta)*w(ii)*w(jj

)*pi*pi/2;

201 end

202 end

203 end

204 end

205

206 end

207 end

208

5



209 % Eshelby ’s tensor:

210 s = zeros (3,3,3,3);

211

212 for i=1:3

213 for j=1:3

214 for k=1:3

215 for l=1:3

216 for m=1:3

217 for n=1:3

218 s(i,j,k,l) = s(i,j,k,l) + 1/4/pi*M(i,j,m,n)*c(m,n,k,l);

219 end

220 end

221 end

222 end

223 end

224 end

225

226 % Convert Eshelby ’s tensor into Voigt notation:

227

228 S = [

229 s(1, 1, 1, 1), s(1, 1, 2, 2), s(1, 1, 3, 3), s(1, 1, 2, 3), s(1, 1,

3, 1), s(1, 1, 1, 2)

230 s(2, 2, 1, 1), s(2, 2, 2, 2), s(2, 2, 3, 3), s(2, 2, 2, 3), s(2, 2,

3, 1), s(2, 2, 1, 2)

231 s(3, 3, 1, 1), s(3, 3, 2, 2), s(3, 3, 3, 3), s(3, 3, 2, 3), s(3, 3,

3, 1), s(3, 3, 1, 2)

232 2*s(2, 3, 1, 1), 2*s(2, 3, 2, 2), 2*s(2, 3, 3, 3), 2*s(2, 3, 2, 3), 2*s(2, 3,

3, 1), 2*s(2, 3, 1, 2)

233 2*s(3, 1, 1, 1), 2*s(3, 1, 2, 2), 2*s(3, 1, 3, 3), 2*s(3, 1, 2, 3), 2*s(3, 1,

3, 1), 2*s(3, 1, 1, 2)

234 2*s(1, 2, 1, 1), 2*s(1, 2, 2, 2), 2*s(1, 2, 3, 3), 2*s(1, 2, 2, 3), 2*s(1, 2,

3, 1), 2*s(1, 2, 1, 2)

235 ];

236 S

237

238 e = S*e_0 ’;

239 e’

240

241

242 disp(’Program has finished!’)

2 Finite element simulation - verification of the semi-analytical
implementation

Due to the intricate and error-prone nature of deriving the aforementioned equations, ensuring our
confidence in their application necessitates a finite element simulation. This approach involves comparing
the outcomes of a numerical finite element simulation solution with the semi-analytical solution outlined
by the previous equations.
A finite element analysis is constructed encompassing three distinct cases of ellipsoids characterized by
aspect ratios a× b× c: 1× 1× 1, 1× 1× 2, and 2× 1× 3.
The finite element Representative Volume Elements (RVEs) are visually depicted below. It’s worth
noting that these RVEs possess finite dimensions, which stands in contrast to the Eshelby solutions
derived for an infinitely large matrix. Consequently, this discrepancy may introduce some variations.
However, as long as the matrix’s dimensions are sufficiently large relative to the size of the ellipsoid, any
resulting error should remain relatively minor.
Let us generate a random eigen strain tensor

ε0 =
[
0.023522 0.076558 0.019838 0.068208 0.059107 0.031905

]T
(10)

Given this eigen strain, the strain generated within the ellipsoid is predicted using the semi-analytical
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Figure 1: Ellipsoids of aspect ratios a) 1x1x1, b) 1x1x2, and c) 2x1x3.

solution (see Matlab code) and using the finite element simulation. The results are compared in the
table below.

Table 1: Semi-analytical solutions and finite element simulation solutions of the ellipsoid strain compo-
nents for the given eigen strain tensor.

ε0 ε(1×1×1) ε(1×1×2) ε(2×1×3)

FEM analytical FEM analytical FEM analytical
xx 0.023522 0.016544 0.016907 0.0197261 0.020092 0.0106386 0.009391
yy 0.076558 0.042158 0.042171 0.0507705 0.050056 0.0676905 0.067769
zz 0.019838 0.014737 0.015157 0.0064683 0.006845 0.0050078 0.0051844
yz 0.068208 0.032787 0.032480 0.0316119 0.030895 0.0429553 0.04018
zx 0.059107 0.028448 0.028146 0.0273814 0.026772 0.0220308 0.019031
xy 0.031905 0.015371 0.015187 0.0184856 0.018011 0.0208782 0.018065

An important observation to make is that in the isotropic scenario, the outcomes remain unaffected by
the Young’s modulus E, manifesting a dependency solely on the Poisson’s ratio ν.
To illustrate the convergence of the semi-analytical solutions across varying numbers of Gauss integration
points towards the numerical finite element solution, refer to the figures provided below. These figures
distinctly demonstrate the alignment between the results. The dashed lines in the figures represent the
finite element simulation solutions for the six components of the strain tensor, while the circled lines
represent the semi-analytical solutions for varying number of Gauss integration points with increased
number of integration points leading to a more precise result.
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Figure 2: Sensitivity analysis demonstrating the convergence of numerical integration using the Gauss
method (marked lines) and the solution obtained from the finite element simulation (dashed lines).

Below, the outcomes of the finite element simulations for the three outlined cases are displayed. These
visualizations depict the εyy component of the strain field, effectively illustrating the uniform nature
of strain (and stress) within the ellipsoid. This corroborates the findings derived by Eshelby. A no-
table observation is the remarkable concurrence between the numerical outcomes and the semi-analytical
solutions derived for an infinitely extensive matrix, despite the presence of stress-free boundaries.
In the ultimate assessment, the case involving dimensions 2 × 1 × 3 is explored, featuring a random
eigen strain ε0ij coupled with a fully anisotropic tensor of elastic constants Cijkl. Importantly, when
generating a random elastic tensor matrix, it’s imperative to verify its positive definiteness. For instance
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Figure 3: Strain component εyy for the three ellipsoid cases. Notice that the strain field within the
ellipsoid is uniform.

using Matlab, this can be accomplished by employing the chol(C) function, which would issue an error
message if matrix ‘C‘ lacks positive definiteness.
For the following case of eigen strain and tensor of elastic constants

ε0 =
[
0.023522 0.076558 0.019838 0.068208 0.059107 0.031905

]T
(11)

C =


1.9627 0.71094 1.2973 2.1394 1.908 1.1079

0.88304 0.57145 1.129 0.85012 0.76032
1.7383 1.7461 1.5757 0.97334

2.8236 2.6732 1.5282
2.9695 1.4951

1.1461

 (12)

the results of the semi-analytical and numerical solutions are collated in the figure below. Also, strain
field within and around the ellipsoidal inclusion is presented.
A noteworthy observation is the heightened complexity of the strain field surrounding the precipitate
and reaching the domain boundaries. In terms of the semi-analytical solution, it becomes evident that an
increased number of Gauss integration points would facilitate even stronger convergence. Nevertheless,
it is evident that the semi-analytical results and the finite element simulation outcomes align remarkably
well also for a case of fully anisotropic material.

3 Special cases - closed form solutions

The previous section explored an arbitrary ellipsoid within an anisotropic material. However, by imposing
specific assumptions about the ellipsoid’s shape and considering simplified anisotropic conditions, it is
possible to derive closed-form analytical solutions. Several of such examples are considered below:

3.1 Isotropic sphere

For the case of a spherical inclusion and isotropic material, the following expression can be derived [3]:

Sijkl =

(
1− 5

3
β

)
IijIkl +

1

2
β

(
IikIjl + IilIjk − 2

3
IijIkl

)
(13)

where β = 10ν−8
15(ν−1)

Below is a Matlab code. You can easily verify that the outcomes of both the general code and this
specific code will align when dealing with an isotropic spherical inclusion.

Listing 2: Matlab example

1 % Eigen strain:
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Figure 4: Strain component εyy for the fully anisotropic case.
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Figure 5: Convergence analysis of the Gauss method.

2 e_0 = [0.023522 , 0.076558 , 0.019838 , 0.068208 , 0.059107 , 0.031905];

3

4 % Poisson ’s ratio:

5 v = 0.3;

6

7 beta = (10.0*v-8.0) /(15.0*v -15.0)

8

9 I3 = eye (3);

10 for i=1:3

11 for j=1:3

12 for k=1:3

13 for l=1:3

14 s(i,j,k,l) = (1.0 -5.0/3.0* beta)*I3(i,j)*I3(k,l) + 0.5* beta*(I3(i,k)*I3(j,l)

+ I3(i,l)*I3(j,k) -2.0/3.0*I3(i,j)*I3(k,l));

15 end

16 end
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17 end

18 end

19

20 S = [

21 s(1, 1, 1, 1), s(1, 1, 2, 2), s(1, 1, 3, 3), s(1, 1, 2, 3), s(1, 1,

3, 1), s(1, 1, 1, 2)

22 s(2, 2, 1, 1), s(2, 2, 2, 2), s(2, 2, 3, 3), s(2, 2, 2, 3), s(2, 2,

3, 1), s(2, 2, 1, 2)

23 s(3, 3, 1, 1), s(3, 3, 2, 2), s(3, 3, 3, 3), s(3, 3, 2, 3), s(3, 3,

3, 1), s(3, 3, 1, 2)

24 2*s(2, 3, 1, 1), 2*s(2, 3, 2, 2), 2*s(2, 3, 3, 3), 2*s(2, 3, 2, 3), 2*s(2, 3,

3, 1), 2*s(2, 3, 1, 2)

25 2*s(3, 1, 1, 1), 2*s(3, 1, 2, 2), 2*s(3, 1, 3, 3), 2*s(3, 1, 2, 3), 2*s(3, 1,

3, 1), 2*s(3, 1, 1, 2)

26 2*s(1, 2, 1, 1), 2*s(1, 2, 2, 2), 2*s(1, 2, 3, 3), 2*s(1, 2, 2, 3), 2*s(1, 2,

3, 1), 2*s(1, 2, 1, 2)

27 ];

28 S

29

30 % Strain within the inclusion:

31 S*e_0 ’

3.2 2D elliptical isotropic inclusion

For a 2D case of an elliptical inclusion (or a cylinder in 3D) and isotropic material, the following can be
derived. As highlighted earlier, in the isotropic case, the Eshelby’s tensor depends only on the Poisson’s
ratio ν:

S1111 =
a2 [2(1− ν)(a1 + a2) + a1]

2(1− ν)(a1 + a2)2

S2222 =
a1 [2(1− ν)(a1 + a2) + a2]

2(1− ν)(a1 + a2)2

S3333 = 0

S1122 =
a2 [−(1− 2ν)a1 + 2νa2]

2(1− ν)(a1 + a2)2

S2211 =
a1 [−(1− 2ν)a2 + 2νa1]

2(1− ν)(a1 + a2)2

S1133 =
νa2

(1− ν)(a1 + a2)

S3311 = 0

S1313 =
a2(2− ν)

2(1− ν)(a1 + a2)

S2323 =
a1(2− ν)

2(1− ν)(a1 + a2)

(14)

Finally, symmetries are applied:
Sijkl = Sijkl = Sijlk = Sjilk

A Matlab code is provided below:

Listing 3: Matlab example

1 % Ellipse:

2 a1=1

3 a2=2

4

5 % Poisson ’s ratio:

6 nu=0.3

7

10



8 % Transformation strain:

9 e_0 = [1.1 0 0;0 -1.1 0;0 0 0]

10

11 % Eshelby ’ strain tensor:

12 S(1,1,1,1) = a2*(2*(1 -nu)*(a1+a2)+a1)/2/(1 -nu)/(a1+a2)^2;

13 S(2,2,2,2) = a1*(2*(1 -nu)*(a1+a2)+a2)/2/(1 -nu)/(a1+a2)^2;

14 S(1,1,2,2) = a2*(-(1-2*nu)*a1+2*nu*a2)/2/(1 -nu)/(a1+a2)^2;

15 S(2,2,1,1) = a1*(-(1-2*nu)*a2+2*nu*a1)/2/(1 -nu)/(a1+a2)^2;

16 S(1,1,3,3) = nu*a2/(1-nu)/(a1+a2);

17 S(1,3,1,3) = a2*(2-nu)/2/(1 -nu)/(a1+a2);

18 S(2,3,2,3) = a1*(2-nu)/2/(1 -nu)/(a1+a2);

19

20 S(3,1,1,3) = a2*(2-nu)/2/(1 -nu)/(a1+a2);

21 S(3,2,2,3) = a1*(2-nu)/2/(1 -nu)/(a1+a2);

22

23 S(1,3,3,1) = a2*(2-nu)/2/(1 -nu)/(a1+a2);

24 S(2,3,3,2) = a1*(2-nu)/2/(1 -nu)/(a1+a2);

25

26 S(3,1,3,1) = a2*(2-nu)/2/(1 -nu)/(a1+a2);

27 S(3,2,3,2) = a1*(2-nu)/2/(1 -nu)/(a1+a2);

28

29 e=zeros (3,3);

30

31 for i=1:3

32 for j=1:3

33 for k=1:3

34 for l=1:3

35 e(i,j) = e(i,j) + S(i,j,k,l)*e_0(k,l);

36 end

37 end

38 end

39 end

40

41 % Strain within the inclusion:

42 e
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