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In this post, we provide a concise summary of the field equations of solid mechanics as they pertain to
cylindrical and spherical coordinates. These representations are particularly beneficial in deriving the
differential equations of axisymmetric objects and obtaining analytical solutions for displacements and
stresses.

1 Cylindrical coordinates

1.1 Cauchy’s equation of motion
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1.2 Time derivative of vector field v
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1.3 Velocity gradient
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2 Spherical coordinates

2.1 Cauchy’s equation of motion

ρv̇ = ∇ · σ + ρb (5)
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2.2 Time derivative of vector field v
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2.3 Velocity gradient
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