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0.1 Thin wall plate

0.1.1 Introduction

Consider the axisymmetric plate geometry depicted in the figure below. The
loading and boundary conditions are assumed to exhibit rotational symmetry.

infinitesimal element

Figure 1: Geometry of the system under consideration. The small cut indicates
an infinitesimally small element used for deriving the force equilibrium.

The geometry is characterized by the inner radius r1, outer radius r2, and
thickness h, with the condition that h ≪ r2. Forces or pressure acting in
the z direction are presumed, adhering to the rotational symmetry. Given the
prescribed loading, boundary conditions, and material properties, our objective
is to solve the equation of mechanical equilibrium ∇⃗ · σ + b⃗ and determine
the displacement field u⃗, as well as the stress and strain tensors σ and ε. To
accomplish this analytically, certain additional assumptions must be established.

Due to the small thickness of the plate, it is not possible to capture the
distribution of the stress component σr along the z direction, as we are assuming
a 2D domain passing through the middle of the plate. While the net force
is zero, the bending effect caused by tensile and compressive stresses can be
effectively modeled using a moment mr per unit length. This assumption can
be mathematically expressed by the following equation:

mr =

∫ h
2

−h
2

zσr1dz (1)

Similarly, we can write for the moment mθ:

1



Figure 2: Visualization of the moment mr and its relationship to stress distri-
bution: (right) Stress distribution along the circumferential cut, (middle) Stress
per unit length, and (left) Equivalent representation by a moment.

mθ =

∫ h
2

−h
2

zσθ1dz (2)

In addition, we will introduce the definition of the force T , which acts in the
z direction and is applied to any cross section per unit length.

0.1.2 Equilbrium equations

Now, let’s establish the equations of mechanical equilibrium. We derive these
equations by summing up all the forces and moments acting on the infinitesi-
mal element, as illustrated in figure below. It is important to note that these
equations must hold for every infinitesimal element.

Figure 3: Infinitesimally small element.

Since the element is infinitesimally small, the increments in moment and
force will also be infinitesimally small. Additionally, we will assume the presence
of pressure pz as depicted in the figure.

Now, let’s sum up all the forces and moments acting on the element.

∑
Fz : (T + dT ) (r + dr) dφ− Trdφ+ pz(r)rdrdφ = 0∑
Mθ : (mr + dmr) (r + dr) dφ−mrrdφ−mθdφdr − Tdr = 0

. (3)

In the force equation, we have used rdφ as the length of the element edge at
r, (r + dr)dφ as the length of the element edge at r + dr, and rdr × dφ as the
area of the element upon which the pressure acts.

Regarding the momentum equation, it is important to observe how mθ par-
tially bends the element in the same manner as mr. This component can
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be readily derived from the left portion of the figure above and thus become
2mθ sin

dφ
2 . This component of mθ, can be approximated as 2mθ

dφ
2 by assum-

ing sin(dφ) ≈ dφ. It is important to note that the other two components will
cancel each other out. Furthermore, the forces T will also create a moment of
Tdr.

By simplifying these equations and neglecting second-order differentials, we
obtain the following expressions:

∑
Fz :

dT

dr
+

T

r
+ p(r) = 0∑

Mθ : mr −mθ +
dmr

dr
− Tr = 0

(4)

At this point, no specific consideration of the material properties has been
taken into account. Therefore, these equations hold for any material, whether
it is elastic, plastic, or exhibits other non-linear behaviour.

0.1.3 Element deformation

Next, we will establish the deformation of the plate. The figure below illustrates
the undeformed and deformed configurations.

Figure 4: Undeformed and deformed configurations of the plate.

The strain tensor can be expressed in the following form, with the shear com-
ponents assumed to be zero due to the axisymmetric assumptions that prohibit
any shear deformation:

ε =

εr 0 0
0 εθ 0
0 0 0

 (5)

In polar coordinates, it can be shown that εr = du
dr , where u represents the

horizontal displacement component. Additionally, εθ = 1
r
dθ
dφ + u

r , but due to
the axisymmetry, the first term will vanish, resulting in εθ = u

r .
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ε =

du
dr 0 0
0 u

r 0
0 0 0

 (6)

By examining the positions of the P and Q points before and after defor-
mation, as depicted in the subfigure, we can establish a relationship between
horizontal displacement and rotation:

sinϑ =
−uQ

z
(7)

From this equation, we can deduce that uQ = −z sinϑ. For small rotations,
we can approximate sinϑ as ϑ, resulting in uQ = −zϑ. It is important to note
that this relationship holds for any point on the body.

The strain tensor finally becomes:

ε =

−z dϑ
dr 0 0
0 −z ϑ

r 0
0 0 0

 (8)

0.1.4 Constitutive model

After deriving the equations of mechanical equilibrium and the strain tensor,
we can establish the relationship between stress and strain using a constitutive
model. In this case, we will assume a linear elastic material response, which
follows Hooke’s Law:

σ = C : ε (9)

σr =
E

1− ν2
(εr + νεθ)

σθ =
E

1− ν2
(εθ + νεr)

(10)

0.1.5 Differential equation

We can now proceed to calculate the moments mr and mθ using the equations
derived earlier:

mr =

∫ h
2

−h
2

zσrdz = − E

1− ν2

(
dϑ

dr
− ν

ϑ

r

)∫ h
2

−h
2

z2dz = − Eh3

12(1− ν2)︸ ︷︷ ︸
=B

(
dϑ

dr
− ν

ϑ

r

)
(11)

where B = Eh3

12(1−ν2) is the bending stiffness.

Similarly,

mθ =

∫ h
2

−h
2

zσθdz = − Eh3

12(1− ν2)

(
ϑ

r
+ ν

dϑ

dr

)
(12)

4



We can now use the second equation of mechanical equilibrium to arrive to
the following differential equation

d2ϑ

dr2
+

1

r

dϑ

dr
− ϑ

r2
= −T (r)

B
(13)

which can be also written using w:

d3w

dr3
+

1

r

d2w

dr2
− 1

r2
dw

dr
= −T (r)

B
(14)

0.2 Solutions to specific cases

Here, we present the solutions to the derived differential equations for specific
boundary conditions and loading cases. The differential equation can also be
expressed in the following format:

d

dr

[
1

r

d

dr
(rϑ)

]
= −T (r)

B
(15)

The solution for the rotation field ϑ can be found as

ϑ = c1r +
c2
r

− 1

Br

∫
r

(
r

∫
r

T (r)dr

)
dr (16)

Similarly, the displacement component w can be shown to be:

w = c1
r2

2
+ c2 ln(r)−

1

B

∫
r

[
1

r

∫
r

(
r

∫
r

T (r)dr

)
dr

]
dr (17)

For any given function T (r), which can vary along r and can also be derived
from the pressure p, an analytical solution can be obtained. In the following,
we will consider a couple of examples and compare them with a finite element
analysis for comparison.

0.3 Finite element analysis of solid and comparison to
thin-wall analytical solution

An important question to address is how closely the analytical solution, as-
suming thin-wall assumptions, approximates the solid solution. We also need
to determine the cases for which the analytical solution can be reliably used.
To answer these questions, we will solve the full equations using the finite el-
ement method and compare the results with the assumptions we have made,
considering different ratios of h/r.

In order to validate the analytical solution, we will compare it with the
numerical solution obtained through the finite element method for the cases
presented in the previous section. By comparing the analytical and numerical
results, we can assess the accuracy and applicability of the analytical solution.

0.3.1 Plate with r1 = 0 and uniform pressure p

Using the first equation of mechanical equilibrium (
∑

Fz = 0), and integrating,
we can find the general solution:
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T (r) =
c1
r

− 1

r

∫ r

0

rp(r)dr, (18)

where c1 is a constant.
If there are no forces other than the pressure acting on the plate, c1 = 0.

For the constant pressure, we can then easily derive

T (r) = −pr

2
. (19)

Integrating the previous equations, the rotation becomes and vertical dis-
placement become:

ϑ =
pr3

16B
, w =

pr4

64B
(20)
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