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0.1 Cylinder
0.1.1 Introduction

We will consider a geometry of cylinder depicted in Fig.1. The inner and the
outer radius are denoted by r; and 73, respectively. There is no constrain put
on the length of the cylinder. An infinitesimally small element dr x dp x dh is
selected for the derivation of deformation and equilibrium equations.
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Figure 1: Geometry under consideration depicting the infinitesimally small ele-
ment.

0.1.2 Equilibrium equations

Equilibrium equations are derived from the forces acting on the infinitesimally
small element.
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Additionally, pressure may be applied which clearly leads to o, = p,.



The equation of mechanical equilibrium in r becomes:
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dr

Notice that equilibrating the > F, = 0 will be already satisfied (leaving to
reader to try).
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0.1.3 Element deformation

Following the axisymmetry constrains, the strain tensor is of the following form:
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Analysing the element deformation, it can de derived that:
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Since axisyemmtry does not permit shear, all shear components of the strain
tensor are zero.

0.1.4 Constitutive model

We will consider linear elastic material model with two material parameters:
Young’s modulus F and Poisson’s ratio v. This leads to the following stress-
strain relationship:
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0.1.5 Governing differential equation

By combing the derived equations, we arrive at the following governing differ-
ential equation:
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The analytical solution to this differential equation is of the following form:
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where the constants ¢; and ¢y are determined from the boundary conditions.

0.2 Solutions



