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The purpose of this post is to briefly introduce the basic concepts of a simple

crystal plasticity model formulation. More advanced topics will be presented
later.

0.1 Introduction

The aim of a crystal plasticity model is to integrate the symmetries of the
crystal lattice into the formulation for plastic flow. This framework acknowl-
edges individual slip systems, but instead of focusing on individual dislocations,
it considers them on an average scale through densities. The crystal plastic-
ity framework is well-suited for modeling the behavior of single crystals and
polycrystalline aggregates, where explicit representation of individual grains is
employed.

In this section, we lay the foundations of a straightforward crystal plasticity
model based on the assumptions of the small strain theory.

0.2 Kinematics

According to the small strain theory, the kinematics of deformation can be de-
scribed by decomposing the total strain rate into elastic and plastic components,
using an additive approach.

ε̇ = ε̇e + ε̇p

where the strain measure is defined by:

ε =
1

2

(
∇u+ (∇u)

T
)

(1)

Here u is the displacement field and ∇ is the divergence operator.
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The rate of plastic strain is proportional to dislocation slip on individual slip
planes α

ε̇p =
∑
α

γ̇α (m⃗α ⊙ n⃗α) sign(τα) (2)

where the notation ⊙ is used for the symmetric tensor product: m⃗α
0 ⊙ n⃗α =

1
2 [m⃗

α ⊗ n⃗α + n⃗α ⊗ m⃗α
0 ].

The slip systems for the FCC crystal lattice are provided in the table below:

0.3 Hardening law

ṡα =
∑
β

hαβ |γ̇β |

For the case of no hardening, hαβ = 0. (Taylor, 1983) proposed hαβ = h,
and (Pierce et al., 1983)

hαβ = h(γ)
[
q + (1− q)δαβ

]
0.4 Flow rule

0.4.1 Rate-independent formulation (yield surface)

In the rate-independent formulation one needs to define a yield surface. The
amount of slip will then be calculated from the consistency condition. Only
some of the slip systems will be active.

We will consider the following yield surface:

|τα| = sα (3)

and during the plastic flow, the active slip systems must satisfy the consis-
tency condition

|τ̇α| = ṡα (4)

The resolved shear stress is calculated following:

τα = σ : m⃗α ⊙ n⃗αsign(τα)

This is also called the associated flow rule where all components of stress do
work, unlike in the more complex case of non-Schmidt effects where some stress
components only distort the core of dislocations (especially in BCC metals).

Substituting the derived equations into the consistency condition, we arrive
to the following:

σ̇ : m⃗α ⊙ n⃗αsign(τα) =
∑
β

hαβ |γ̇β |

C : ε̇− sign(τβ)C :
∑
β

γ̇βm⃗β ⊙ n⃗β

 : m⃗α ⊙ n⃗αsign(τα) =
∑
β

hαβ |γ̇β |
(5)

We can rewrite these equations into a system of linear equations:
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[
hαβ + sign(τα)sign(τβ)m⃗α ⊙ n⃗α : C : m⃗β ⊙ n⃗β

]
γ̇β = sign(τβ)m⃗α ⊙ n⃗α : C : ε̇

(6)
therefore

Aαβ γ̇β = bα (7)

Noticed that we have removed the absolute value from the rate of shearing,
and as we proceed with solving these equations, we will only consider the case
for which γ̇β > 0.

Since various combinations of slip systems and slip shearing rates could result
in the same deformation, the solution is not unique. To overcome this issues,
we may select such result which of of the possible combinations will yield the
least amount of energy. The system of equations can be efficiently solved using
the singular value decomposition [Kothari].

Thus for a given strain rate ∆ε/∆t, the increment in shearing can be calcu-
lated ∆γα.

0.4.2 Rate-dependent formulation (kinetics of dislocation slip)

In the rate-dependent formulation, all slip systems are always active although
the small rate of slip of some slip systems may be perceived as inactivity. The
kinetic law governing the rate of shear can be of a very general form:

γ̇α = f(stress, material state, temperature, ...).

The kinetic law can be of phenomenological, physical, or strain gradient
nature. The most commonly used is an empirical power law

γ̇α = Aα (τα)
m

While this law is easy to implement, it is purely empirical temperature inde-
pendent and may be valid only within certain physical limits. The most common
form of the power law is [?]:

γ̇α = γ̇α
0

∣∣∣∣ταsα
∣∣∣∣m sign(τα)

Unable to capture the physical limits of dislocation velocities and temper-
ature effects, the power law is primarily used as a numerical device due to its
simplicity fitted to be valid in a certain specific range of loading conditions.

A more physical model of thermally activated slip is based on the Arrhenius-
type of equations [?], [?]:

γ̇α =

{
0 if ταeff ≤ 0
γ̇α
0 exp

{
−∆G

kT

}
if ταeff > 0

(8)

where ∆G is the energy barrier needed to be overcome by thermal fluctua-
tions:

∆G = G0

[
1−

(
ταeff
sαt

)p]q
(9)

and ταeff = |τα| − sαa is the effective stress.

3



The coefficients p and q represent the shape of the barriers opposing the
dislocation motion.

For more interested readers, another form of the activation enthalpy was
presented by [?]

To find the solution in the rate-dependent case seems now more straightfor-
ward as the equations can be easily discretized. For the explicit discretization,

∆γα = ∆tγ̇α
0

∣∣∣∣τα(t)sα(t)

∣∣∣∣ sign(τα(t)) (10)

0.5 Analytical solutions

For simple case, it may be possible to derive analytical or semi-analytical solu-
tions.

Consider a single crystal under [001], [110], and [111] orientation. These
are the points of the stereographic triangle, and for these three specific case, 8,
4, and 6 slip systems will be active with exact the same amount of slip on all
of them. For illustration, we consider the [001] case. Furthermore, we assume
isotropic elastic material properties defined by Young’s modulus E and Poisson’s
ratio ν.

(Taylor, 1983)
(Pierce et al., 1983)
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