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1 Theory

The objective of this post is the establish the basic formulations of a homogenized plasticity model.
By ’homogenized’ we refer to the macroscopic description of polycrystalline aggregates in which the
dislocation activity on individual slip systems is averaged over a large number of randomly oriented
grains. In general, this theory is not applicable to single crystals.

1.1 Rate-independent formulation

1.2 Isotropic von-Mises plasticity

In the von-Misses theory, the yield criterion is derived from the critical shear strain energy that initiates
plastic flow. This leads to a yield surface that is a function of the second invariant of the deviatoric
stress tensor:
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where the second invariant of the deviatoric stress tensor is defined as:
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s : s, (2)

and the deviatoric stress as s = σ − 1 1
3 trσ.

1.3 Numerical integration

2 Insights into 1D homogenized plasticity

2.1 Plastic flow regime in rate-independent formulation

Consider a simple 1D problem in which the material is strained and undergoes a plastic flow. The
following are the set of equations to describe this problem:
The constitutive equation:
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)
. (3)

The yield surface:

f = σ − (σy +Hα) = 0

ḟ = σ̇ −Hα̇ = 0
. (4)

The internal variable α representing the equivalent plastic strain:

α = ε̄p =

∫ t

0
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λ̇dτ. (5)

Assuming the plastic flow only, and putting all the equations together, we get:
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which gives the scalar plastic multiplier:
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ε, (7)

during the plastic flow.
Finally, the stress-strain curve becomes:
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The two interesting cases emerge (in the plastic regime) when H = 0, then σ = σy and when H → ∞,
then σ = Eε.
—

3 Rate-dependent formulation

3.1 Plastic flow regime in rate-dependent formulation

Let’s assume a simple power-law function and define the plastic strain rate as:
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Substituting into a simple constitutive model, one arrives to the following:
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This represents a non-linear equation that can be discretized in time and solved using the Newton-
Raphson method.
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Using the Newton-Raphson method, we get
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