

Title: Homogenized plasticity

Author: Jakub Mikula

Date: December 26, 2024

1 Theory

The objective of this post is to establish the basic formulations of a homogenized plasticity model. By 'homogenized' we refer to the macroscopic description of polycrystalline aggregates in which the dislocation activity on individual slip systems is averaged over a large number of randomly oriented grains. In general, this theory is not applicable to single crystals.

1.1 Rate-independent formulation

1.2 Isotropic von-Mises plasticity

In the von-Mises theory, the yield criterion is derived from the critical shear strain energy that initiates plastic flow. This leads to a yield surface that is a function of the second invariant of the deviatoric stress tensor:

$$\begin{aligned} f(\sigma, \mathbf{q}) &= \sqrt{2J_2} - \sqrt{\frac{2}{3}}(\sigma_y + H\alpha) \\ &= \sqrt{\mathbf{s} : \mathbf{s}} - \sqrt{\frac{2}{3}}(\sigma_y + H\alpha) \\ &= \|\mathbf{s}\| - \sqrt{\frac{2}{3}}(\sigma_y + H\alpha) \end{aligned} \quad (1)$$

where the second invariant of the deviatoric stress tensor is defined as:

$$J_2 = \frac{1}{2}\mathbf{s} : \mathbf{s}, \quad (2)$$

and the deviatoric stress as $\mathbf{s} = \sigma - \mathbf{1} \frac{1}{3} \text{tr} \sigma$.

1.3 Numerical integration

2 Insights into 1D homogenized plasticity

2.1 Plastic flow regime in rate-independent formulation

Consider a simple 1D problem in which the material is strained and undergoes a plastic flow. The following are the set of equations to describe this problem:

The constitutive equation:

$$\dot{\sigma} = E \left(\dot{\varepsilon} - \dot{\lambda} \frac{\partial f}{\partial \sigma} \right). \quad (3)$$

The yield surface:

$$\begin{aligned} f &= \sigma - (\sigma_y + H\alpha) = 0 \\ \dot{f} &= \dot{\sigma} - H\dot{\alpha} = 0 \end{aligned} \quad (4)$$

The internal variable α representing the equivalent plastic strain:

$$\alpha = \bar{\varepsilon}^p = \int_0^t \dot{\varepsilon}^p d\tau = \int_0^t \dot{\lambda} d\tau. \quad (5)$$

Assuming the plastic flow only, and putting all the equations together, we get:

$$E \frac{d\varepsilon}{d\lambda} \frac{d\lambda}{dt} - E \frac{d\lambda}{dt} - H \frac{d\lambda}{dt}. \quad (6)$$

which gives the scalar plastic multiplier:

$$\lambda = \frac{E}{E+H} \varepsilon, \quad (7)$$

during the plastic flow.

Finally, the stress-strain curve becomes:

$$\sigma = \begin{cases} E\varepsilon & \text{if } \varepsilon < \frac{\sigma_y}{E} \\ E \left[\varepsilon - \frac{E}{E+H} \left(\varepsilon - \frac{\sigma_y}{E} \right) \right] & \text{if } \varepsilon \geq \frac{\sigma_y}{E} \end{cases}. \quad (8)$$

The two interesting cases emerge (in the plastic regime) when $H = 0$, then $\sigma = \sigma_y$ and when $H \rightarrow \infty$, then $\sigma = E\varepsilon$.

3 Rate-dependent formulation

3.1 Plastic flow regime in rate-dependent formulation

Let's assume a simple power-law function and define the plastic strain rate as:

$$\dot{\varepsilon}^p = \dot{\gamma}_0 \left(\frac{\sigma}{s_0} \right)^{\frac{1}{m}} = \dot{\gamma}_0 \left(\frac{\sigma}{s_0} \right)^n \quad (9)$$

Substituting into a simple constitutive model, one arrives to the following:

$$\dot{\sigma} = E \left(\dot{\varepsilon} - \dot{\gamma}_0 \left(\frac{\sigma}{s_0} \right)^n \right) \quad (10)$$

This represents a non-linear equation that can be discretized in time and solved using the Newton-Raphson method.

$$\frac{\sigma_{i+1} - \sigma_i}{\Delta t} = E \left(\frac{\Delta\varepsilon}{\Delta t} - \dot{\gamma}_0 \left(\frac{\sigma_{i+1}}{s_0} \right)^n \right) \quad (11)$$

$$\frac{E\dot{\gamma}_0}{s_0^n} \sigma_{i+1}^n + \frac{1}{\Delta t} \sigma_{i+1} - \left(E \frac{\Delta\varepsilon}{\Delta t} + \frac{\sigma_i}{\Delta t} \right) = 0 \quad (12)$$

Using the Newton-Raphson method, we get

$$\begin{aligned} \sigma_{i+1}^{k+1} &= \sigma_{i+1}^k - \frac{f(\sigma_{i+1}^k)}{f'(\sigma_{i+1}^k)} \\ \sigma_{i+1}^{k+1} &= \sigma_{i+1}^k - \frac{\frac{E\dot{\gamma}_0}{s_0^n} (\sigma_{i+1}^k)^n + \frac{1}{\Delta t} \sigma_{i+1}^k - \left(E \frac{\Delta\varepsilon}{\Delta t} + \frac{\sigma_i}{\Delta t} \right)}{\frac{nE\dot{\gamma}_0}{s_0^n} (\sigma_{i+1}^k)^{n-1} + \frac{1}{\Delta t}} \end{aligned} \quad (13)$$