

1 Displacement field from strain tensor

Given a strain tensor ε , the objective is to calculate the displacement field \mathbf{u} with respect to some fixed reference coordinate system.

Within the infinitesimal strain theory, the strain tensor is calculate from the displacement field from

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad (1)$$

and contains 6 independent components:

$$\varepsilon = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ * & \varepsilon_{yy} & \varepsilon_{yz} \\ * & * & \varepsilon_{zz} \end{bmatrix}. \quad (2)$$

The displacement field under constant strain ε_{ij}^a can be then calculated

$$\begin{aligned} u &= \varepsilon_{xx}^a x + f1(y) + f2(z) \\ v &= \varepsilon_{yy}^a y + g1(x) + g2(z) \\ w &= \varepsilon_{zz}^a z + h1(y) + h2(x) \\ \frac{\partial f1}{\partial y} + \frac{\partial g1}{\partial x} &= \varepsilon_{xy}^a \rightarrow B + D = \varepsilon_{xy}^a, \\ \frac{\partial g2}{\partial z} + \frac{\partial h1}{\partial y} &= \varepsilon_{yz}^a \rightarrow F + H = \varepsilon_{yz}^a \\ \frac{\partial h2}{\partial x} + \frac{\partial f2}{\partial z} &= \varepsilon_{zx}^a \rightarrow J + L = \varepsilon_{zx}^a \end{aligned} \quad (3)$$

from which it is obtained

$$\begin{aligned} u &= \varepsilon_{xx}^a x + A + By + K + Lz = \varepsilon_{xx}^a x + A' + By + Lz \\ v &= \varepsilon_{yy}^a y + C + Dx + E + Fz = \varepsilon_{yy}^a y + C' + Dx + Fz. \\ w &= \varepsilon_{zz}^a z + G + Hy + I + Jx = \varepsilon_{zz}^a z + G' + Hy + Jx \end{aligned} \quad (4)$$

Fixing a $a \times a \times a$ cube in space with the following boundar conditons: $u(0,0,0) = 0$, $v(0,0,0) = 0$, $w(0,0,0) = 0$, $v(a,0,0) = 0$, $w(a,0,0) = 0$, $w(a,a,0) = 0$, six equations of the six unknown constants are solved:

$$\begin{aligned} A' &= 0 \\ B &= \varepsilon_{xy}^a \\ C' &= 0 \\ D &= 0 \\ F &= \varepsilon_{yz}^a, \\ G' &= 0 \\ H &= 0 \\ J &= 0 \\ L &= \varepsilon_{zx}^a \end{aligned} \quad (5)$$

which gives:

$$\begin{aligned}
u &= \varepsilon_{xx}^a x + \varepsilon_{xy}^a y + \varepsilon_{xz}^a z \\
v &= \varepsilon_{yy}^a y + \varepsilon_{yz}^a z \\
w &= \varepsilon_{zz}^a z
\end{aligned} \tag{6}$$