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1 Introduction

This post discusses the relationship between stresses σ and strains ε in crystals with cubic symmetry,
specifically focusing on FCC and BCC crystal structures. Furthermore, the rotation of these tensors in
three-dimensional space is illustrated.
The figure below shows a cubic crystal, which includes simple cubic (left), body-centered cubic (middle),
and face-centered cubic (right) structures. Two coordinate systems are presented: the crystal coordinate
system (xc, yc, zc), aligned with the ⟨100⟩ directions, and the global coordinate system (x, y, z), which
is rotated relative to the crystal coordinate system about a vector o by an angle θ.
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Figure 1: Example of a single crystal structure. Two coordinate systems are illustrated: crystal (x′,y′,z′)
and global (x,y,z) coordinate system.

The simplest constitutive model describing the relationship between stress (σ) and strain (ε) in these
crystal structures is linear, commonly referred to as Hooke’s law. According to this law, stress is directly
proportional to strain, therefore, we can write:

σij = Dijklεkl

σ = Dε
, (1)

where σ is a second-rank stress tensor, ε is a second-rank strain tensor, and D is a fourth-rank tensor
of elastic constants. This relationship can be written in the crystal coordinate system using the Voigt
notation as follows: 
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 =


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D12 D12 D11 0 0 0
0 0 0 D44 0 0
0 0 0 0 D44 0
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


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 , (2)

which in 2D simplifies into σxx

σyy

τxy

 =

C11 C12 0
C12 C11 0
0 0 D44

εxxεyy
γxy

 . (3)
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It is important to note that the constitutive law is formulated using engineering strain. The
shear strain components of the engineering strain, denoted as γij, are twice as large as the
shear strain components of the tensorial strain, which can be expressed as γij = 2εij for i ̸= j.
Assuming small deformations, the tensorial strain can be calculated as εij = 1/2 (∂ui/∂xj + ∂uj/∂xi).
Here, u⃗ is the displacement field.
Depending on this assumption, if we consider plane strain conditions where εzz = 0, the constants of the
strain tensor in two dimensions remain the same: C11 = D11, and C12 = D12. On the other hand, if we

assume plane stress conditions, (σzz = 0), C11 =
D2

11−D2
12

D11
, and C12 =

D11D12−D2
12

D11
.

A useful parameter for describing cubic anisotropy is the Zener ratio, which is a dimensionless number
calculated as follows: D44/D

′ where D′ = D11−D12

2 .
The elastic constants of selected materials, along with their corresponding Zener ratios, are summarized
in the following table:

Table 1: Elastic constants of some FCC metals

Metal C11 (GPa) C12 (GPa) C44 (GPa) C44/C
′

Pba 55.6 45.4 19.4 3.8
Aga 131.5 97.3 51.1 2.99
Aua 201 170 46 2.97
Cub 225 153 115 3.19
Nia 261 151 132 2.4
Ala 114 62 32 1.23
Pda 232 176 71.2 2.45
Pta 358 253 77.5 1.47

a = [1], b = [2]

2 Tensor rotation (rotation of elastic properties)

For interested readers, a more detailed analysis can be found in [3].
This section begins by defining the rotation matrix We denote rotated tensors by a prime symbol (′). A
fourth-rank tensor is rotated as D′ = T ·D · T T , while a second-rank tensor, such as stress, is rotated
as σ′ = R · σ ·RT , where R is the rotation matrix.
Rotation (R) and coordinate transformation (Q) are distinct, with their relationship expressed as R =
QT . To begin, we consider the general form of a rotation matrix:

R =

cos(x′,x) cos(y′,x) cos(z′,x)
cos(x′,y) cos(y′,y) cos(z′,y)
cos(x′, z) cos(y′, z) cos(z′, z)

 . (4)

The T matrix may then be assembled as

T =

[
T (1) 2T (2)

T (3) T (4)

]
, (5)

where

T
(1)
ij = R2

ij

T
(2)
ij = Rimod(j+1,3)Rimod(j+2,3)

T
(3)
ij = Rmod(i+1,3)jRmod(i+2,3)j

T
(4)
ij = Rmod(i+1,3)mod(j+1,3)Rmod(i+2,3)mod(j+2,3) +Rmod(i+1,3)mod(j+2,3)Rmod(i+2,3)mod(j+1,3)

, (6)

where the modulo function is defined as

mod(i,3) =

{
i i ≤ 3

i− 3 i > 3
. (7)
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2.1 Rotation about an axis o = (o1, o2, o3), |o| = 1

When rotation occurs about an arbitrary axis o, the rotation matrix R simplifies to:

R =

 o21 + (1− o12) cos θ o1o2(1− cos θ)− o3 sin θ o1o3(1− cos θ) + o2 sin θ
o1o2(1− cos θ) + o3 sin θ o22 + (1− o22) cos θ o2o3(1− cos θ)− o1 sin θ
o1o3(1− cos θ)− o2 sin θ o2o3(1− cos θ) + o1 sin θ o23 + (1− o23) cos θ

 (8)

2.2 Rotation of the Tensor of Elastic Constants C

The constitutive law defines the tensor of elastic constants as a proportionality tensor relating stresses
to engineering strains. The engineering strain shear terms γij are twice as large as the tensorial strain
shear terms εij . Considering this, the tensor of elastic constants is rotated using the following equation:

C ′ = TCAT−1A−1 (9)

where the matrix A (also known as the Reuter’s matrix) is used to convert between the tensorial ε and
engineering γ strains.

A =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 (10)

The following Matlab script demonstrates how to rotate the tensor of elastic constants about an arbitrary
vector o. This script uses the background image of this post, in which the elastic constants D11, D12,
and D44 are given in the crystal coordinate system, and the tensor of elastic constants is rotated into
the global coordinate system (x, y, z).

Listing 1: Matlab example

1 % (c) 2018 Jakub Mikula

2 % PURPOSE:

3 % Example of tensor rotation about a general axis

4 % Rotating tensor of elastic constants about an arbitrary vector o

5 %

6 % INPUT:

7 % > elastic constants D_11 , D_12 , D_44

8 % > rotation axis o1 , o2 , o3

9 % > rotation angle theta

10 % OUTPUT:

11 % > rotated tensor of elastic constants in matrix form D_rot

12

13 % -----------------------------------------------------------

14

15 % Material : [GPa]

16 D_11 = 190

17 D_12 = 161

18 %D_44 = (D_11 -D_12)/2 % uncomment for isotropic elasticity

19 D_44 = 42.3

20

21 % Axis to rotate about

22 % Make sure that |o|=1

23 o1 = 0

24 o2 = 0

25 o3 = 1

26

27 % Specify the angle [RAD]

28 theta = -pi/4

29

30 % -----------------------------------------------------------

31
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32 % Tensor of elastic constants (cubic elasticity) in the matrix form

33 % Voigth notation

34 D = [D_11 D_12 D_12 0 0 0

35 D_12 D_11 D_12 0 0 0

36 D_12 D_12 D_11 0 0 0

37 0 0 0 D_44 0 0

38 0 0 0 0 D_44 0

39 0 0 0 0 0 D_44];

40

41 % Matrix due to the conversion from engineering to tensorial strain

42 R(:,:) = 0.0d0;

43 R(1,1) = 1.0d0;

44 R(2,2) = 1.0d0;

45 R(3,3) = 1.0d0;

46 R(4,4) = 2.0d0;

47 R(5,5) = 2.0d0;

48 R(6,6) = 2.0d0;

49

50 invR (:,:) = R(:,:);

51 invR (4,4) = .5d0;

52 invR (5,5) = .5d0;

53 invR (6,6) = .5d0;

54

55

56 % Rotating about an arbitrary axis (between crystal and global coordinate

system)

57 R_cg=[o1^2+(1-o1^2)*cos(theta) o1*o2*(1-cos(theta))-o3*sin(theta) o1*o3*(1-cos(

theta))+o2*sin(theta)

58 o1*o2*(1-cos(theta))+o3*sin(theta) o2^2+(1-o2^2)*cos(theta) o2*o3*(1-cos(

theta))-o1*sin(theta)

59 o1*o3*(1-cos(theta))-o2*sin(theta) o2*o3*(1-cos(theta))+o1*sin(theta) o3

^2+(1-o3^2)*cos(theta)];

60

61

62 for i=1:3

63 for j=1:3

64

65 mmod = [1 1 1 1 1

66 -1 2 2 2 2

67 0 0 3 3 3

68 1 1 1 4 4

69 2 2 2 2 5];

70

71 K1(i,j) = R_cg(i,j)^2;

72 K2(i,j) = R_cg(i,mmod(j+1,3))*R_cg(i,mmod(j+2,3));

73 K3(i,j) = R_cg(mmod(i+1,3),j)*R_cg(mmod(i+2,3),j);

74 K4(i,j) = R_cg(mmod(i+1,3),mmod(j+1,3))*R_cg(mmod(i+2,3),mmod(j+2,3)) + ...

75 R_cg(mmod(i+1,3),mmod(j+2,3))*R_cg(mmod(i+2,3),mmod(j+1,3));

76 end

77 end

78

79 T_cg (1:3 ,1:3) = K1;

80 T_cg (1:3 ,4:6) = 2.0d0*K2;

81 T_cg (4:6 ,1:3) = K3;

82 T_cg (4:6 ,4:6) = K4;

83

84 invT_cg (1:3 ,1:3) = K1 ’;

85 invT_cg (1:3 ,4:6) = 2.0d0*K3 ’;

86 invT_cg (4:6 ,1:3) = K2 ’;

87 invT_cg (4:6 ,4:6) = K4 ’;

88

89 % Rotated tensor of elastic constants

90 D_rot = T_cg*D*R*invT_cg*invR
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2.3 Rotation of C About ⟨001⟩ in 2D

The rotation of the elastic constants can be derived using the following rotation matrices:

Rxc =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,Ryc =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,RzC =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 . (11)

If we rotate the coordinate system about zc ([001]) by an angle θ, we can express the equations above in
the following form:

C ′
11 = C11

(
cos4 θ + sin4 θ

)
+ 2C12 sin

2 θ cos2 θ + C33 sin
2 2θ

C ′
12 = C12

(
cos4 θ + sin4 θ

)
+ 2C11 sin

2 θ cos2 θ − C33 sin
2 2θ

C ′
13 = 1

2C11 sin 2θ cos 2θ − 1
2C12 sin 2θ cos 2θ − 1

2C33 sin 4θ
C ′

21 = C ′
12

C ′
22 = C ′

11

C ′
23 = −C ′

13

C ′
31 = C ′

13

C ′
32 = −C ′

13

C ′
33 = 1

2C11 sin
2 2θ − 1

2C12 sin
2 2θ + C33 cos

2 2θ

. (12)

The following Matlab code is provided:

Listing 2: Matlab example

1 % Purpose: rotate tensor of elastic constants C into C_rot by angle theta

2 % Define: theta [1]

3 % C [3x3]

4 % Output: C_rot [3x3]

5

6 C_rot (1,1) = C(1,1)*(cos(theta)^4+sin(theta)^4) + 2*C(1,2)*sin(theta)^2*cos(

theta)^2 + C(3,3)*sin(2* theta)^2;

7 C_rot (1,2) = C(1,2)*(cos(theta)^4+sin(theta)^4) + 2*C(1,1)*sin(theta)^2*cos(

theta)^2 - C(3,3)*sin(2* theta)^2;

8 C_rot (1,3) = 0.5*C(1,1)*sin(2* theta)*cos(2* theta) - 0.5*C(1,2)*sin(2* theta)*cos

(2* theta) - 0.5*C(3,3)*sin (4* theta);

9 C_rot (2,1) = C_rot (1,2);

10 C_rot (2,2) = C_rot (1,1);

11 C_rot (2,3) = -C_rot (1,3);

12 C_rot (3,1) = C_rot (1,3);

13 C_rot (3,2) = -C_rot (1,3);

14 C_rot (3,3) = 0.5*C(1,1)*sin(2* theta)^2 - 0.5*C(1,2)*sin(2* theta)^2 + C(3,3)*cos

(2* theta)^2;

The derivatives of these with respect to the orientation θ are,

∂C′
11

∂θ = −4 sin θ cos θ
(
2 cos2 θ(C11 − C12)− 4 cos2 θC33 − C11 + C12 + 2C33

)
∂C′

12

∂θ = 4 sin θ cos θ
(
2 cos2 θ(C11 − C12)− 4 cos2 θC33 − C11 + C12 + 2C33

)
∂C′

13

∂θ = cos2 2θ(2C11 − 2C12)− 4C33 cos
2 2θ − C11 + C12 + 2C33

∂C′
33

∂θ = sin 4θ(C11 − C12 − 2C33)

. (13)

The derivatives evaluated from the tensor of elastic constants vanish for isotropic materials, where C33 is
related to C11 and C12 through the equation C33 = C11−C12

2 . This property has interesting implications
for nanocrystalline materials [4], where they are proportional to the bulk driving force contributing to
grain boundary motion.
A Matlab code of the derivatives is provided below:

Listing 3: Matlab example

1 % Purpose: rotate tensor of elastic constants C and calculate the derivative

with respect to orientation theta into dC_rot

2 % Define: theta [1]

3 % C [3x3]

4 % Output: dC_rot [3x3]
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5

6 dC_rot (1,1) = -4*sin(theta)*cos(theta)*(2* cos(theta)^2*(C(1,1)-C(1,2)) - 4*cos(

theta)^2*dC(3,3) - C(1,1) + C(1,2) + 2*C(3,3));

7 dC_rot (1,2) = 4*sin(theta)*cos(theta)*(2* cos(theta)^2*(C(1,1)-C(1,2)) - 4*cos(

theta)^2*C(3,3) - C(1,1) + C(1,2) + 2*C(3,3));

8 dC_rot (1,3) = cos (2* theta)^2*(2*C(1,1) -2*C(1,2)) - 4*C(3,3)*cos (2* theta)^2 - C

(1,1) + C(1,2) + 2*C(3,3);

9 dC_rot (2,1) = dC_rot (1,2);

10 dC_rot (2,2) = dC_rot (1,1);

11 dC_rot (2,3) = -dC_rot (1,3);

12 dC_rot (3,1) = dC_rot (1,3);

13 dC_rot (3,2) = -dC_rot (1,3);

14 dC_rot (3,3) = sin (4* theta)*(C(1,1) - C(1,2) - 2*C(3,3));
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