

1 Introduction

This post discusses the relationship between stresses σ and strains ε in crystals with cubic symmetry, specifically focusing on FCC and BCC crystal structures. Furthermore, the rotation of these tensors in three-dimensional space is illustrated.

The figure below shows a cubic crystal, which includes simple cubic (left), body-centered cubic (middle), and face-centered cubic (right) structures. Two coordinate systems are presented: the crystal coordinate system (x_c, y_c, z_c), aligned with the $\langle 100 \rangle$ directions, and the global coordinate system (x, y, z), which is rotated relative to the crystal coordinate system about a vector \mathbf{o} by an angle θ .

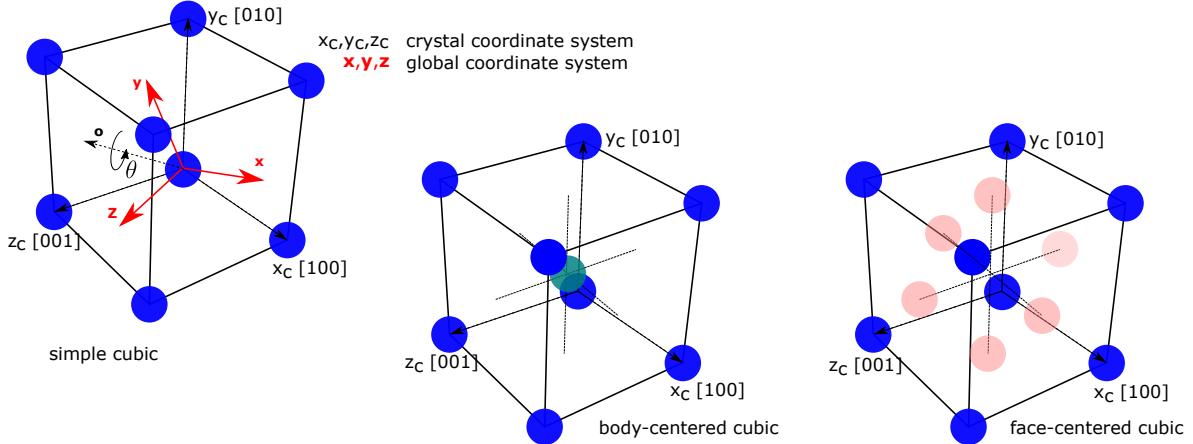


Figure 1: Example of a single crystal structure. Two coordinate systems are illustrated: crystal (x', y', z') and global (x, y, z) coordinate system.

The simplest constitutive model describing the relationship between stress (σ) and strain (ε) in these crystal structures is linear, commonly referred to as Hooke's law. According to this law, stress is directly proportional to strain, therefore, we can write:

$$\sigma_{ij} = \mathcal{D}_{ijkl} \varepsilon_{kl}, \quad \sigma = \mathbf{D} \varepsilon \quad (1)$$

where σ is a second-rank stress tensor, ε is a second-rank strain tensor, and \mathbf{D} is a fourth-rank tensor of elastic constants. This relationship can be written in the crystal coordinate system using the Voigt notation as follows:

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \sigma_{yz} \\ \sigma_{zx} \\ \sigma_{xy} \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{11} & D_{12} & 0 & 0 & 0 \\ D_{12} & D_{12} & D_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & D_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{zx} \\ \gamma_{xy} \end{bmatrix}, \quad (2)$$

which in 2D simplifies into

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & 0 \\ C_{12} & C_{11} & 0 \\ 0 & 0 & D_{44} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{bmatrix}. \quad (3)$$

It is important to note that the constitutive law is formulated using engineering strain. The shear strain components of the engineering strain, denoted as γ_{ij} , are twice as large as the shear strain components of the tensorial strain, which can be expressed as $\gamma_{ij} = 2\varepsilon_{ij}$ for $i \neq j$. Assuming small deformations, the tensorial strain can be calculated as $\varepsilon_{ij} = 1/2(\partial u_i / \partial x_j + \partial u_j / \partial x_i)$. Here, \vec{u} is the displacement field.

Depending on this assumption, if we consider plane strain conditions where $\varepsilon_{zz} = 0$, the constants of the strain tensor in two dimensions remain the same: $C_{11} = D_{11}$, and $C_{12} = D_{12}$. On the other hand, if we assume plane stress conditions, ($\sigma_{zz} = 0$), $C_{11} = \frac{D_{11}^2 - D_{12}^2}{D_{11}}$, and $C_{12} = \frac{D_{11}D_{12} - D_{12}^2}{D_{11}}$.

A useful parameter for describing cubic anisotropy is the Zener ratio, which is a dimensionless number calculated as follows: D_{44}/D' where $D' = \frac{D_{11} - D_{12}}{2}$.

The elastic constants of selected materials, along with their corresponding Zener ratios, are summarized in the following table:

Table 1: Elastic constants of some FCC metals

Metal	C_{11} (GPa)	C_{12} (GPa)	C_{44} (GPa)	C_{44}/C'
Pb ^a	55.6	45.4	19.4	3.8
Ag ^a	131.5	97.3	51.1	2.99
Au ^a	201	170	46	2.97
Cu ^b	225	153	115	3.19
Ni ^a	261	151	132	2.4
Al ^a	114	62	32	1.23
Pd ^a	232	176	71.2	2.45
Pt ^a	358	253	77.5	1.47

^a = [1], ^b = [2]

2 Tensor rotation (rotation of elastic properties)

For interested readers, a more detailed analysis can be found in [3].

This section begins by defining the rotation matrix. We denote rotated tensors by a prime symbol ('). A fourth-rank tensor is rotated as $\mathbf{D}' = \mathbf{T} \cdot \mathbf{D} \cdot \mathbf{T}^T$, while a second-rank tensor, such as stress, is rotated as $\boldsymbol{\sigma}' = \mathbf{R} \cdot \boldsymbol{\sigma} \cdot \mathbf{R}^T$, where \mathbf{R} is the rotation matrix.

Rotation (\mathbf{R}) and coordinate transformation (\mathbf{Q}) are distinct, with their relationship expressed as $\mathbf{R} = \mathbf{Q}^T$. To begin, we consider the general form of a rotation matrix:

$$\mathbf{R} = \begin{bmatrix} \cos(\mathbf{x}', \mathbf{x}) & \cos(\mathbf{y}', \mathbf{x}) & \cos(\mathbf{z}', \mathbf{x}) \\ \cos(\mathbf{x}', \mathbf{y}) & \cos(\mathbf{y}', \mathbf{y}) & \cos(\mathbf{z}', \mathbf{y}) \\ \cos(\mathbf{x}', \mathbf{z}) & \cos(\mathbf{y}', \mathbf{z}) & \cos(\mathbf{z}', \mathbf{z}) \end{bmatrix}. \quad (4)$$

The \mathbf{T} matrix may then be assembled as

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}^{(1)} & 2\mathbf{T}^{(2)} \\ \mathbf{T}^{(3)} & \mathbf{T}^{(4)} \end{bmatrix}, \quad (5)$$

where

$$\begin{aligned} T_{ij}^{(1)} &= R_{ij}^2 \\ T_{ij}^{(2)} &= R_{i \bmod(j+1,3)} R_{i \bmod(j+2,3)} \\ T_{ij}^{(3)} &= R_{\bmod(i+1,3)j} R_{\bmod(i+2,3)j} \\ T_{ij}^{(4)} &= R_{\bmod(i+1,3)\bmod(j+1,3)} R_{\bmod(i+2,3)\bmod(j+2,3)} + R_{\bmod(i+1,3)\bmod(j+2,3)} R_{\bmod(i+2,3)\bmod(j+1,3)} \end{aligned}, \quad (6)$$

where the modulo function is defined as

$$\text{mod}(i,3) = \begin{cases} i & i \leq 3 \\ i - 3 & i > 3 \end{cases}. \quad (7)$$

2.1 Rotation about an axis $\mathbf{o} = (o_1, o_2, o_3)$, $|\mathbf{o}| = 1$

When rotation occurs about an arbitrary axis \mathbf{o} , the rotation matrix \mathbf{R} simplifies to:

$$\mathbf{R} = \begin{bmatrix} o_1^2 + (1 - o_1^2) \cos \theta & o_1 o_2 (1 - \cos \theta) - o_3 \sin \theta & o_1 o_3 (1 - \cos \theta) + o_2 \sin \theta \\ o_1 o_2 (1 - \cos \theta) + o_3 \sin \theta & o_2^2 + (1 - o_2^2) \cos \theta & o_2 o_3 (1 - \cos \theta) - o_1 \sin \theta \\ o_1 o_3 (1 - \cos \theta) - o_2 \sin \theta & o_2 o_3 (1 - \cos \theta) + o_1 \sin \theta & o_3^2 + (1 - o_3^2) \cos \theta \end{bmatrix} \quad (8)$$

2.2 Rotation of the Tensor of Elastic Constants \mathbf{C}

The constitutive law defines the tensor of elastic constants as a proportionality tensor relating stresses to **engineering strains**. The engineering strain shear terms γ_{ij} are twice as large as the tensorial strain shear terms ε_{ij} . Considering this, the tensor of elastic constants is rotated using the following equation:

$$\mathbf{C}' = \mathbf{T} \mathbf{C} \mathbf{A} \mathbf{T}^{-1} \mathbf{A}^{-1} \quad (9)$$

where the matrix \mathbf{A} (also known as the Reuter's matrix) is used to convert between the tensorial ε and engineering γ strains.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad (10)$$

The following Matlab script demonstrates how to rotate the tensor of elastic constants about an arbitrary vector \mathbf{o} . This script uses the background image of this post, in which the elastic constants D_{11} , D_{12} , and D_{44} are given in the crystal coordinate system, and the tensor of elastic constants is rotated into the global coordinate system (x, y, z) .

Listing 1: Matlab example

```

1  % (c) 2018 Jakub Mikula
2  %
3  % PURPOSE:
4  % Example of tensor rotation about a general axis
5  % Rotating tensor of elastic constants about an arbitrary vector o
6  %
7  % INPUT:
8  %     > elastic constants D_11, D_12, D_44
9  %     > rotation axis o1, o2, o3
10 %     > rotation angle theta
11 % OUTPUT:
12 %     > rotated tensor of elastic constants in matrix form D_rot
13 %
14 %
15 % Material : [GPa]
16 %             D_11 = 190
17 %             D_12 = 161
18 %D_44 = (D_11-D_12)/2 % uncomment for isotropic elasticity
19 %             D_44 = 42.3
20 %
21 % Axis to rotate about
22 % Make sure that |o|=1
23 %             o1 = 0
24 %             o2 = 0
25 %             o3 = 1
26 %
27 % Specify the angle [RAD]
28 %             theta = -pi/4
29 %
30 %
31 
```

```

32 % Tensor of elastic constants (cubic elasticity) in the matrix form
33 % Voigth notation
34 D = [D_11 D_12 D_12 0 0 0
35     D_12 D_11 D_12 0 0 0
36     D_12 D_12 D_11 0 0 0
37     0 0 0 D_44 0 0
38     0 0 0 0 D_44 0
39     0 0 0 0 0 D_44];
40
41 % Matrix due to the conversion from engineering to tensorial strain
42 R(:,:,:) = 0.0d0;
43 R(1,1) = 1.0d0;
44 R(2,2) = 1.0d0;
45 R(3,3) = 1.0d0;
46 R(4,4) = 2.0d0;
47 R(5,5) = 2.0d0;
48 R(6,6) = 2.0d0;
49
50 invR(:,:,:) = R(:,:,,:);
51 invR(4,4) = .5d0;
52 invR(5,5) = .5d0;
53 invR(6,6) = .5d0;
54
55
56 % Rotating about an arbitrary axis (between crystal and global coordinate
57 % system)
57 R_cg=[o1^2+(1-o1^2)*cos(theta) o1*o2*(1-cos(theta))-o3*sin(theta) o1*o3*(1-cos(
58     theta))+o2*sin(theta)
59     o1*o2*(1-cos(theta))+o3*sin(theta) o2^2+(1-o2^2)*cos(theta) o2*o3*(1-cos(
60         theta))-o1*sin(theta)
61     o1*o3*(1-cos(theta))-o2*sin(theta) o2*o3*(1-cos(theta))+o1*sin(theta) o3
62     ^2+(1-o3^2)*cos(theta)];
```

```

63
64
65 mmod = [1 1 1 1 1
66             -1 2 2 2 2
67             0 0 3 3 3
68             1 1 1 4 4
69             2 2 2 2 5];
```

```

70
71 K1(i,j) = R_cg(i,j)^2;
72 K2(i,j) = R_cg(i,mmod(j+1,3))*R_cg(i,mmod(j+2,3));
73 K3(i,j) = R_cg(mmod(i+1,3),j)*R_cg(mmod(i+2,3),j);
74 K4(i,j) = R_cg(mmod(i+1,3),mmod(j+1,3))*R_cg(mmod(i+2,3),mmod(j+2,3)) + ...
75             R_cg(mmod(i+1,3),mmod(j+2,3))*R_cg(mmod(i+2,3),mmod(j+1,3));
76 end
77 end
```

```

78
79 T_cg(1:3,1:3) = K1;
80 T_cg(1:3,4:6) = 2.0d0*K2;
81 T_cg(4:6,1:3) = K3;
82 T_cg(4:6,4:6) = K4;
83
84 invT_cg(1:3,1:3) = K1';
85 invT_cg(1:3,4:6) = 2.0d0*K3';
86 invT_cg(4:6,1:3) = K2';
87 invT_cg(4:6,4:6) = K4';
88
89 % Rotated tensor of elastic constants
90 D_rot = T_cg*D*R*invT_cg*invR
```

2.3 Rotation of C About $\langle 001 \rangle$ in 2D

The rotation of the elastic constants can be derived using the following rotation matrices:

$$\mathbf{R}^{x_c} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, \mathbf{R}^{y_c} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, \mathbf{R}^{z_c} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (11)$$

If we rotate the coordinate system about z_c ($[001]$) by an angle θ , we can express the equations above in the following form:

$$\begin{aligned} C'_{11} &= C_{11} (\cos^4 \theta + \sin^4 \theta) + 2C_{12} \sin^2 \theta \cos^2 \theta + C_{33} \sin^2 2\theta \\ C'_{12} &= C_{12} (\cos^4 \theta + \sin^4 \theta) + 2C_{11} \sin^2 \theta \cos^2 \theta - C_{33} \sin^2 2\theta \\ C'_{13} &= \frac{1}{2}C_{11} \sin 2\theta \cos 2\theta - \frac{1}{2}C_{12} \sin 2\theta \cos 2\theta - \frac{1}{2}C_{33} \sin 4\theta \\ C'_{21} &= C'_{12} \\ C'_{22} &= C'_{11} \\ C'_{23} &= -C'_{13} \\ C'_{31} &= C'_{13} \\ C'_{32} &= -C'_{13} \\ C'_{33} &= \frac{1}{2}C_{11} \sin^2 2\theta - \frac{1}{2}C_{12} \sin^2 2\theta + C_{33} \cos^2 2\theta \end{aligned} \quad . \quad (12)$$

The following Matlab code is provided:

Listing 2: Matlab example

```

1 % Purpose:  rotate tensor of elastic constants C into C_rot by angle theta
2 % Define:   theta [1]
3 %
4 % Output:   C_rot [3x3]
5
6 C_rot(1,1) = C(1,1)*(cos(theta)^4+sin(theta)^4) + 2*C(1,2)*sin(theta)^2*cos(theta)^2 + C(3,3)*sin(2*theta)^2;
7 C_rot(1,2) = C(1,2)*(cos(theta)^4+sin(theta)^4) + 2*C(1,1)*sin(theta)^2*cos(theta)^2 - C(3,3)*sin(2*theta)^2;
8 C_rot(1,3) = 0.5*C(1,1)*sin(2*theta)*cos(2*theta) - 0.5*C(1,2)*sin(2*theta)*cos(2*theta) - 0.5*C(3,3)*sin(4*theta);
9 C_rot(2,1) = C_rot(1,2);
10 C_rot(2,2) = C_rot(1,1);
11 C_rot(2,3) = -C_rot(1,3);
12 C_rot(3,1) = C_rot(1,3);
13 C_rot(3,2) = -C_rot(1,3);
14 C_rot(3,3) = 0.5*C(1,1)*sin(2*theta)^2 - 0.5*C(1,2)*sin(2*theta)^2 + C(3,3)*cos(2*theta)^2;

```

The derivatives of these with respect to the orientation θ are,

$$\begin{aligned} \frac{\partial C'_{11}}{\partial \theta} &= -4 \sin \theta \cos \theta (2 \cos^2 \theta (C_{11} - C_{12}) - 4 \cos^2 \theta C_{33} - C_{11} + C_{12} + 2C_{33}) \\ \frac{\partial C'_{12}}{\partial \theta} &= 4 \sin \theta \cos \theta (2 \cos^2 \theta (C_{11} - C_{12}) - 4 \cos^2 \theta C_{33} - C_{11} + C_{12} + 2C_{33}) \\ \frac{\partial C'_{13}}{\partial \theta} &= \cos^2 2\theta (2C_{11} - 2C_{12}) - 4C_{33} \cos^2 2\theta - C_{11} + C_{12} + 2C_{33} \\ \frac{\partial C'_{33}}{\partial \theta} &= \sin 4\theta (C_{11} - C_{12} - 2C_{33}) \end{aligned} \quad . \quad (13)$$

The derivatives evaluated from the tensor of elastic constants vanish for isotropic materials, where C_{33} is related to C_{11} and C_{12} through the equation $C_{33} = \frac{C_{11}-C_{12}}{2}$. This property has interesting implications for nanocrystalline materials [4], where they are proportional to the bulk driving force contributing to grain boundary motion.

A Matlab code of the derivatives is provided below:

Listing 3: Matlab example

```

1 % Purpose:  rotate tensor of elastic constants C and calculate the derivative
2 %           with respect to orientation theta into dC_rot
3 %
4 % Define:   theta [1]
5 %
6 % Output:   dC_rot [3x3]

```

```

5  dC_rot(1,1) = -4*sin(theta)*cos(theta)*(2*cos(theta)^2*(C(1,1)-C(1,2)) - 4*cos(
6   theta)^2*dC(3,3) - C(1,1) + C(1,2) + 2*C(3,3));
7  dC_rot(1,2) = 4*sin(theta)*cos(theta)*(2*cos(theta)^2*(C(1,1)-C(1,2)) - 4*cos(
8   theta)^2*C(3,3) - C(1,1) + C(1,2) + 2*C(3,3));
9  dC_rot(1,3) = cos(2*theta)^2*(2*C(1,1)-2*C(1,2)) - 4*C(3,3)*cos(2*theta)^2 - C
10  (1,1) + C(1,2) + 2*C(3,3);
11  dC_rot(2,1) = dC_rot(1,2);
12  dC_rot(2,2) = dC_rot(1,1);
13  dC_rot(2,3) = -dC_rot(1,3);
14  dC_rot(3,1) = dC_rot(1,3);
15  dC_rot(3,2) = -dC_rot(1,3);
16  dC_rot(3,3) = sin(4*theta)*(C(1,1) - C(1,2) - 2*C(3,3));

```

References

- [1] Gene Simmons and Herbert F. Wang. Single crystal elastic constants and calculated aggregate properties. a handbook. 1971.
- [2] F. Jona and P. M. Marcus. Structural properties of copper. *Phys. Rev. B*, 63:094113, Feb 2001.
- [3] Minhang Bao. Chapter 6 - piezoresistive sensing. In Minhang Bao, editor, *Analysis and Design Principles of MEMS Devices*, pages 247–304. Elsevier Science, Amsterdam, 2005.
- [4] Jakub Mikula, Shailendra P. Joshi, Tong-Earn Tay, Rajeev Ahluwalia, and Siu Sin Quek. A phase field model of grain boundary migration and grain rotation under elasto–plastic anisotropies. *International Journal of Solids and Structures*, 178-179:1–18, 2019.