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1 Introduction

This post discusses the relationship between stresses o and strains € in crystals with cubic symmetry,
specifically focusing on FCC and BCC crystal structures. Furthermore, the rotation of these tensors in
three-dimensional space is illustrated.

The figure below shows a cubic crystal, which includes simple cubic (left), body-centered cubic (middle),
and face-centered cubic (right) structures. Two coordinate systems are presented: the crystal coordinate
system (., ye, 2¢), aligned with the (100) directions, and the global coordinate system (z, y, z), which
is rotated relative to the crystal coordinate system about a vector o by an angle 6.

yc [010]

Xc,Yc,Zc crystal coordinate system
X,¥,Z global coordinate system

xc [100]

simple cubic z¢ [001) zc [001
Xc [100]

xc [100]

body-centered cubic face-centered cubic

Figure 1: Example of a single crystal structure. Two coordinate systems are illustrated: crystal («’,y’,z")
and global (x,y,z) coordinate system.

The simplest constitutive model describing the relationship between stress (o) and strain (&) in these
crystal structures is linear, commonly referred to as Hooke’s law. According to this law, stress is directly
proportional to strain, therefore, we can write:

0ij = Dijkieri

oc=De (1)

where o is a second-rank stress tensor, € is a second-rank strain tensor, and D is a fourth-rank tensor
of elastic constants. This relationship can be written in the crystal coordinate system using the Voigt
notation as follows:

Oz [Dy1 D1y Dz O 0 0 Exx

Oyy D12 D11 D12 0 0 0 Eyy

Ozz _ D12 D12 Dll 0 0 0 Ezz (2)

Oyz 0 0 0 D44 0 0 Vyz ’

Oxy L 0 0 0 0 0 D44 Yy

which in 2D simplifies into

_Um Cii Cia 0 Exx
Oyy | = 012 011 0 Eyy (3)
L Tzy 0 0 D44 Yy




It is important to note that the constitutive law is formulated using engineering strain. The
shear strain components of the engineering strain, denoted as v;;, are twice as large as the
shear strain components of the tensorial strain, which can be expressed as v;; = 2¢;; for i # j.
Assuming small deformations, the tensorial strain can be calculated as €;; = 1/2 (9u;/0z; + Ou;/0x;).
Here, 4 is the displacement field.

Depending on this assumption, if we consider plane strain conditions where €,, = 0, the constants of the
strain tensor in two dimensions remain the same: C11 = D11, and Ci2 = D1s. On the other hand, if we
assume plane stress conditions, (0., = 0), C1; = D%b;f%?, and C1o = %ﬁ:%.

A useful parameter for describing cubic anisotropy is the Zener ratio, which is a dimensionless number
calculated as follows: Dyy4/D’ where D' = %.

The elastic constants of selected materials, along with their corresponding Zener ratios, are summarized
in the following table:

Table 1: Elastic constants of some FCC metals

Metal 011 (GPa) 012 (GP&) 044 (GP&) C44/C/
Pbe 55.6 45.4 19.4 3.8
Ag® 131.5 97.3 51.1 2.99
Au® 201 170 46 2.97
Cu? 225 153 115 3.19
Ni® 261 151 132 2.4

Al 114 62 32 1.23
Pd® 232 176 71.2 2.45
Pt 358 253 7.5 1.47

2 Tensor rotation (rotation of elastic properties)

For interested readers, a more detailed analysis can be found in [3].

This section begins by defining the rotation matrix We denote rotated tensors by a prime symbol (/). A
fourth-rank tensor is rotated as D' = T - D - TT, while a second-rank tensor, such as stress, is rotated
as 0/’ = R-o - RY, where R is the rotation matrix.

Rotation (R) and coordinate transformation (Q) are distinct, with their relationship expressed as R =
QT. To begin, we consider the general form of a rotation matrix:

cos(x’,x) cos(y,x) cos(z,x)
R = |cos(2’,y) cos(y’,y) cos(z,y)]|. (4)
cos(x’,z) cos(y’,z) cos(Z,z)
The T matrix may then be assembled as
T 92
T= [ @) p | (5)
T T
where
(1) _ p2
Tl(Jz) = Rimod(j+1,3)Ritl)od(j+2,3) (6)
3 )
Tl(J) = Rmod(i+l,3)jRmod(i+2,3)j
4
Tl(J) = Rmod(i+l,3)mod(j+1,3)Rmod(i+2,3)mod(j+2,3) + Rmod(i+1,3)mod(j+2,3)Rmod(i+2,3)mod(j+l,3)
where the modulo function is defined as
i 1<3
d(i,3) =4 . .
mod(i,3) {1—3 >3 (7)
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2.1 Rotation about an axis o = (01, 09,03), |0o| =1

When rotation occurs about an arbitrary axis o, the rotation matrix R simplifies to:

0% + (1 —012)cos® 0102(1 — cos @) — o3sin® 0103(1 — cos ) + 0y sin
R = |0102(1 — cosf) + 03sinf 03 + (1 — 03) cos 0203(1 — cos @) — 01 8in 6 (8)
0103(1 —cosf) —oa8inf  0903(1 — cosB) + o7 sin b 03+ (1 — 0%) cos b

2.2 Rotation of the Tensor of Elastic Constants C

The constitutive law defines the tensor of elastic constants as a proportionality tensor relating stresses
to engineering strains. The engineering strain shear terms -y;; are twice as large as the tensorial strain
shear terms €;;. Considering this, the tensor of elastic constants is rotated using the following equation:

C' =TCAT 'A™! (9)

where the matrix A (also known as the Reuter’s matrix) is used to convert between the tensorial € and
engineering ~ strains.

100 0 0 O
01 0 0 O0O0
001 0O0O0
A= 00 0 2 00 (10)
00 00 20
00 0 0 O0 2

The following Matlab script demonstrates how to rotate the tensor of elastic constants about an arbitrary
vector 0. This script uses the background image of this post, in which the elastic constants Dy, D12,
and Dyy are given in the crystal coordinate system, and the tensor of elastic constants is rotated into
the global coordinate system (z, y, 2).

Listing 1: Matlab example

% (c) 2018 Jakub Mikula

% PURPOSE:

% Example of tensor rotation about a general axis

% Rotating tensor of elastic constants about an arbitrary vector o

% INPUT:
% > elastic constants D_11, D_12, D_44
% > rotation axis ol, 02, 03
% > rotation angle theta
% OUTPUT:
% > rotated tensor of elastic constants in matrix form D_rot
/A
% Material : [GPa]
D_11 = 190
D_12 = 161

%D_44 = (D_11-D_12)/2 % uncomment for isotropic elasticity
D_44 = 42.3

% Axis to rotate about
% Make sure that |ol=1

ol =0
02 =0
03 =1

% Specify the angle [RAD]
theta = -pi/4
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% Tensor of elastic constants (cubic elasticity) in the matrix form
% Voigth notation
D = [D_11 D_12 D_12 0 0 O
D_12 D_11 D_12 0 0 ©
2 D_12 D_11 0 0 O
4 0
44 0
D_44];

N

D_
0
0
0

O O O+~
o O O
o O ol

D_
0

% Matrix due to the conversion from engineering to tensorial strain

R(:,:) = 0.0d0;
R(1,1) = 1.040;
R(2,2) = 1.040;
R(3,3) = 1.040;
R(4,4) = 2.040;
R(5,5) = 2.0d40;
R(6,6) = 2.040;
invR(:,:) = R(:,:);
invR(4,4) = .5d0;
invR(5,5) = .5d0;
invR(6,6) = .5d0;

% Rotating about an arbitrary axis (between crystal and global coordinate
system)
R_cg=[01"2+(1-01"2)*cos(theta) ol*02*(l-cos(theta))-o03*sin(theta) ol*03*x(1l-cos(
theta))+o02*sin(theta)
ol1*02*(1-cos(theta))+o3*sin(theta) 02°2+(1-02"2)*cos(theta) o02*03*(1-cos(
theta))-ol*sin(theta)
ol1*03*(1-cos(theta))-o2*sin(theta) o02*03*(1-cos(theta))+ol*sin(theta) o3
~2+(1-03"2)*cos(theta)l];

for i=1:3
for j=1:3

mmod = [1 1 1 1 1

-1 2 2 2 2
003 33
1114 4
2 2 2 2 bB];
K1(i,j) = R_cg(i,j) " 2;
K2(i,j) = R_cg(i,mmod(j+1,3))*R_cg(i,mmod(j+2,3));

K3(i,j) = R_cg(mmod(i+1,3),j)*R_cg(mmod(i+2,3),j);

K4(i,j) = R_cg(mmod(i+1,3) ,mmod(j+1,3))*R_cg(mmod(i+2,3) ,mmod(j+2,3)) +
R_cg(mmod (i+1,3) ,mmod(j+2,3))*R_cg(mmod(i+2,3) ,mmod (j+1,3));

end

end

T_cg(1:3,1:3) = Ki;
T_Cg(1:3,4:6) 2.0d0*K2;
T_cg(4:6,1:3) = K3;

T_cg(4:6,4:6) = K4;
invT_cg(1:3,1:3) = K17;
invT_cg(1:3,4:6) = 2.0d0*K3’;
invT_cg(4:6,1:3) = K27;
invT_cg(4:6,4:6) = K4’;

% Rotated tensor of elastic constants
D_rot = T_cg*D*xR*invT_cg*invR
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2.3 Rotation of C About (001) in 2D

The rotation of the elastic constants can be derived using the following rotation matrices:

1 0 0 cos@ 0 sinf cosf —sinf 0
R = |0 cosf —sinf|,RY = 0 1 0 |,R*®=|sinf@ cosf 0. (11)
0 sinf cosf —sinf 0 cos@ 0 0 1

If we rotate the coordinate system about z. ([001]) by an angle 8, we can express the equations above in
the following form:

Cy =0Cpy (cos4 6 + sin* 9) +2C19 Sin 0 cos? 0 + Css sin 20
Ciy = Cia (cos4 0 + sin 9) +2C11 sin® 6 cos? 6 — C'33 sin? 26
C’13 = 7011 sin 26 cos 260 — 7012 sin 26 cos 20 — C’33 sin 460

Cél = Cu

Céz = 11 . (12)
Cés = _013

Cél = 013

Céz = *Ciz

Cls = $C118in 20 — 1012 8in% 20 + C33 cos? 20
The following Matlab code is provided:

Listing 2: Matlab example

% Purpose: rotate tensor of elastic constants C into C_rot by angle theta

% Define: theta [1]

) C [3x3]

% Output: C_rot [3x3]

C_rot(1,1) = C(1,1)*(cos(theta) "4+sin(theta)~"4) + 2%C(1,2)*sin(theta) "2*cos(

theta) "2 + C(3,3)*sin(2*xtheta) "2;

C_rot(1,2) = C(1,2)*(cos(theta) "4+sin(theta)~4) + 2*xC(1,1)*sin(theta) "2*cos(
theta) "2 - C(3,3)*sin(2*xtheta) "2;

C_rot(1,3) = 0.5*%xC(1,1)*sin(2*xtheta)*cos (2*xtheta) - 0.5%C(1,2)*sin(2*theta) *cos
(2xtheta) - 0.5%C(3,3)*sin(4*xtheta);

C_rot(2,1) = C_rot(1,2);

C_rot(2,2) = C_rot(1,1);

C_rot(2,3) = -C_rot(1,3);
C_rot(3,1) = C_rot(1,3);
C_rot(3,2) = -C_rot(1,3);

C_rot(3,3) = 0.5%C(1,1)*sin(2*theta)”"2 - 0.5%¥C(1,2)*sin(2*theta) "2 + C(3,3)*cos
(2*xtheta) ~2;

The derivatives of these with respect to the orientation 6 are,

ag}él = —4sinfcosb (2 cos? 0(C1y — Cha) — 4cos? 0C33 — Cp1 + Cra + 2033)
650{2 = 4sinfcosf (2 cos? 0(Cpy — C1a) — 4cos? 0C33 — Cy1 + Cra + 2C’33)
915 _ (cog? 20(2C1 — 2C12) — 4C33 cos? 20 — C11 + Cia + 2C33

%4 — sindf(Cyy — Chy — 2Cs3)

(13)

The derivatives evaluated from the tensor of elastic constants vanish for isotropic materials, where Cs3 is
related to C1; and Cig through the equation Cs3 = % This property has interesting implications
for nanocrystalline materials [4], where they are proportional to the bulk driving force contributing to
grain boundary motion.

A Matlab code of the derivatives is provided below:

Listing 3: Matlab example

% Purpose: rotate tensor of elastic constants C and calculate the derivative
with respect to orientation theta into dC_rot

% Define: theta [1]

/A C [3x3]

% Output: dC_rot [3x3]
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dC_rot (1,1) =

-4*xsin(theta)*cos(theta)*(2*xcos(theta) "2*x(C(1,1)-C(1,2)) - 4xcos(

theta) "2*dC(3,3) - C(1,1) + C(1,2) + 2%C(3,3));

dC_rot (1,2) =

4xsin(theta)*cos (theta)*(2*xcos(theta) "2*x(C(1,1)-C(1,2)) - 4x*xcos(

theta) "2*%C(3,3) - C(1,1) + C(1,2) + 2%C(3,3));

dC_rot(1,3) =

cos (2xtheta) "2*x(2*xC(1,1) -2%C(1,2)) - 4*xC(3,3)*cos (2*xtheta) "2 - C

(1,1) + C(1,2) + 2%C(3,3);

dC_rot (2,1) =
dC_rot (2,2) =
dC_rot(2,3) =
dC_rot (3,1) =
dC_rot (3,2) =
dC_rot (3,3) =

dC_rot (1,2);
dC_rot (1,1);
-dC_rot (1,3);
dC_rot (1,3);
-dC_rot (1,3);
sin(4*xtheta)*(C(1,1) - C(1,2) - 2xC(3,3));
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